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INTRODUZIONE 
 

“In Astronomia ogni argomento va meditato ed 

approfondito in senso critico, va analizzato nei suoi 

elementi essenziali e collegato a quanto precede ed a 

quanto segue” 

(prof. Leonida Rosino) 

 

Il Bignamino di Astronomia ha lo scopo di aiutare gli olimpionici nella 

preparazione alle varie fasi delle Olimpiadi Italiane di Astronomia. 

Costituisce la griglia essenziale per la risoluzione dei problemi: l’abbiamo 

pensato come una “bussola”, soprattutto per gli studenti che provengono da 

istituti in cui la fisica non è una disciplina curriculare nel Biennio.  

Seguendo il Syllabus, abbiamo suddiviso il Bignamino in macro-temi: 

o Prima di iniziare: prerequisiti 

o Coordinate celesti 

o Misura del tempo 

o Meccanica celeste 

o Strumenti ottici 

o Astrofisica 

o Cosmologia elementare 

o Miscellanea 

o Sfera e trigonometria sferica 

o Approfondimenti 

Ciascun macro-tema è corredato da sezioni e da esercizi di riferimento, situati 

alla fine del nostro Bignamino. In conclusione, vi è anche un formulario 

generale e una tabella dati.  

 

Buona astronomia! 
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PRIMA DI INIZIARE… 
 

Misure e strumenti 
 

La Fisica è una scienza sperimentale: con questo termine si intende che essa 

si fonda sul metodo scientifico, introdotto nel XVII secolo.  In estrema sintesi, 

lo scienziato comincia con l’osservazione del fenomeno fisico, formula delle 

ipotesi sul suo “comportamento”, realizza degli esperimenti effettuando delle 

misure, con l’intento di provare la validità delle sue ipotesi, e alla fine 

formula una legge utilizzando il linguaggio della matematica (che può essere 

“perfezionata” o corretta da successive osservazioni ed esperimenti). 

 

 

 

 

 

 

 

 

Naturalmente queste misure vengono 

effettuate con degli strumenti che non hanno 

una “precisione” infinita. 

Immaginiamo di volerci pesare su una normale 

bilancia. Dopo essere saliti su di essa, sul display 

compare un valore: supponiamo che esso sia 65.3 

kg.  La bilancia, in questo caso, riesce a misurare con 

un livello di precisione (o meglio, come si dice, di 

risoluzione) dell’etto: quindi non potremo sapere se 

pesiamo, per esempio, 65.31 kg o 65.32 kg; la 

bilancia, per com’è fabbricata, fornisce 

informazioni fino all’ettogrammo.  

Nulla è 

definitivo in 

Fisica! 
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Dato che per conoscere il valore di una grandezza è necessario misurarla 

(altezza di un palazzo, massa di un camion ecc.) e gli strumenti non hanno 

un grado infinito di risoluzione, non si potrà mai conoscere il “valore vero” 

di una determinata grandezza. Non solo, ma le ultime cifre dei valori misurati, 

per quanto detto su, sono anche “incerte”. In generale, quindi, quando lo 

scienziato effettua una misura, scrive accanto al valore misurato una 

incertezza in questo modo: 

( 𝑣𝑎𝑙𝑜𝑟𝑒 𝑚𝑖𝑠𝑢𝑟𝑎𝑡𝑜 ± 𝑖𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑧𝑎 ) 𝑢𝑛𝑖𝑡à 𝑑𝑖 𝑚𝑖𝑠𝑢𝑟𝑎 

Esempio:  

Abbiamo misurato la massa di una persona e ottenuto un 

valore di (85.3 ±0.2) kg (± si legge “più o meno”). Significa 

che il vero valore della massa della persona è compreso fra: 

85.3 – 0.2 = 85.1 kg  e  85.3 + 0.2 = 85.5 kg 

Vediamo che, nel valore 85.3 le cifre 8 e 5 sono cifre certe: le conosciamo 

con certezza, sicuramente la massa dell’uomo è pari a 85 “e qualcosa”, ma 

quel “qualcosa”, cioè il 3 decimale, è incerto. 

 

Fatta questa premessa, affrontiamo più 

rigorosamente la questione… 
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Cifre significative 
 

In un numero misurato sono quelle cifre che includono tutti i numeri sicuri 

più un certo numero finale che ha una certa incertezza:  

Esempio: 

9.82 g 

Il 2 finale ha una certa incertezza → 9.81 g può essere o 9.82 o 9.83 g 

 

 

 

Come determinare le cifre significative? 

a. Sono cifre significative di una determinata misura tutte le cifre eccetto 

gli zeri a sinistra della prima cifra diversa da zero (cioè gli zeri a 

sinistra “non si contano”) 

Esempio: 

9.12 →  3 cifre significative 

0.912 →  3 cifre significative 

0.00912  →  3 cifre significative 

 

b. Gli zeri “centrali” o a destra sono significativi! Si contano!!! 

Esempio:  

9.00 → 3 cifre significative 

90.0 →  3 cifre significative 

9.000 →  4 cifre significative 

0.910 →  3 cifre significative 
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c. Gli zeri finali di un numero intero (senza virgola) sono ambigui!  
 

Perché? 

Supponiamo che un astronomo dica: 

 
 

Così, per quanto detto sopra, sembrerebbe che l’unica cifra incerta sia lo 

0 finale, e la misura dell’astronomo abbia 12 cifre significative. In pratica 

parrebbe che l’astronomo conosca la distanza Terra-Sole come se l’avesse 

misurata con un metro da sarta, in maniera “precisissima”! 

 

 

 

Per evitare questo tipo di ambiguità, è utile ricorrere alla 

notazione scientifica detta anche notazione 

esponenziale… 
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Operazioni con le cifre significative 
 

1) Quando si moltiplicano o dividono quantità misurate il risultato va 

dato con tante cifre significative quante sono quelle della misura 

con il minor numero di cifre significative: 

 
(𝟑 𝒄𝒊𝒇𝒓𝒆)   

 

In notazione scientifica 𝟐. 𝟓𝟎 𝒙 𝟏𝟎−𝟏 

 

 

 

 

2) Quando addizioniamo o sottraiamo quantità misurate il risultato va 

dato con lo stesso numero di decimali della quantità con il minor 

numero di decimali: 

 

184.0 + 2.324 = 186.524                             = 186.5    

→ 𝒖𝒔𝒊𝒂𝒎𝒐 𝒖𝒏 𝒔𝒐𝒍𝒐 𝒅𝒆𝒄𝒊𝒎𝒂𝒍𝒆 

 

 

 

 

3) Un numero “esatto” (coefficienti, 𝜋, 𝑒𝑐𝑐. ) si considera possedere 

un numero di cifre significative infinite in prodotti o divisioni: 

 

2.00 𝑥 3 =  6.00 

 

(con 3 cifre e non una se consideriamo 3 esatto) 
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Notazione scientifica 
 

In notazione scientifica le misure sono espresse in questa forma:  

 

𝑨 𝐱 𝟏𝟎𝒏     

  𝒏 𝒏𝒖𝒎𝒆𝒓𝒐 𝒊𝒏𝒕𝒆𝒓𝒐 

 𝑨 𝒏𝒖𝒎𝒆𝒓𝒐 𝒄𝒐𝒏 𝒍𝒂 𝒗𝒊𝒓𝒈𝒐𝒍𝒂, 𝒊𝒏 𝒈𝒆𝒏𝒆𝒓𝒆 < 𝟏𝟎 

 

Per la determinazione delle cifre significative, si considera solo il 

numero A applicando le regole dette sopra 

 

Esempio:  

9 x 102          1 𝑐𝑖𝑓𝑟𝑎 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑣𝑎  

9.0 x 102      2 𝑐𝑖𝑓𝑟𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑣𝑒 

9.00 x 102      3 𝑐𝑖𝑓𝑟𝑒 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑣𝑒   
 

 

La notazione scientifica elimina le ambiguità: riprendiamo l’esempio di 

prima… 

 

Supponiamo che il metodo con cui l’astronomo ha misurato la distanza Terra-

Sole gli permetta di avere una risoluzione fino alle centinaia di milioni di 

metri: allora lui scriverà  

 

𝑑 = 1.496 x  1011𝑚𝑒𝑡𝑟𝑖 (𝑝𝑖ù 𝑜 𝑚𝑒𝑛𝑜 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑒 𝑖𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑧𝑎) 

 

Riportando la misura con 4 cifre significative, di cui l’ultima incerta (6? 5? 

7?) 

 

 

 

 

 

 

 

 

 

 

 

RICORDA… 

Se il numero da portare in notazione scientifica è < 1, l’esponente del 10  

deve essere negativo, mentre se è >1, l’esponente è positivo! 

4853 =  4.853 𝑥 1000 =  4.853 ∗  10 ∗  10 ∗ 10 =  4.853 𝑥 103 

0.004853 = 
4.853

1000
=

4.853

10x10x10
= 4.853 ∗  10−1 ∗  10−1 ∗  10−1 = 4.853 x 10−3 
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Operazioni con la notazione scientifica 
 

Addizioni e sottrazioni:  

Prima di sommare o sottrarre due numeri scritti in notazione scientifica è 

necessario esprimerli entrambi nella stessa potenza di 10 e poi sommare o 

sottrarre i coefficienti 

 

9.42 × 10−2  +  7.60 × 10−3 = 

= 9.42 × 10−2  +  0.760 × 10−2 = 

=  10.18 × 10−2  = 

=  1.02 × 10−1 

 

Moltiplicazioni e divisioni:  

Per moltiplicare due numeri si moltiplicano prima le due potenze di 10 

sommando gli esponenti e poi si moltiplicano i fattori rimanenti 

 

6.3 × 102 ∗ 2.64 × 105  = 

= (6.3 ∗  2.64) × 107  =  

= 15.12 × 107  =  

= 1.5 × 108 

 

Analogamente per dividere due numeri si dividono prima le due potenze di 

10 sottraendo gli esponenti e poi si dividono i fattori rimanenti. 

 

Potenze:  

Un numero A × 10n elevato ad una potenza p è calcolato elevando A alla 

potenza p e moltiplicando l'esponente nella potenza di 10 per p 

 

(𝐴 × 10𝑛)𝑝  =  𝐴𝑝 × 10𝑛×𝑝 

 

(4.0 × 10−3)4 =  
 

= (4.0)4 × 10−3×4  =  

 

= 256.0 × 10−12  =  

 

= 2.6 × 10−10 
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Arrotondamento 
 

Si guarda la cifra dopo a quella che si vuole arrotondare e: 

-  se è minore di 5, si conferma la cifra 

- se è maggiore o uguale si aumenta di un’unità 

 

Esempio:   

1.3456  𝑎𝑟𝑟𝑜𝑡𝑜𝑛𝑑𝑖𝑎𝑚𝑜 𝑎 4 𝑐𝑖𝑓𝑟𝑒 

→    𝑔𝑢𝑎𝑟𝑑𝑜 𝑙𝑎 𝑞𝑢𝑖𝑛𝑡𝑎 𝑐𝑖𝑓𝑟𝑎  

→   è 𝑢𝑛 6 𝑐ℎ𝑒 è > 5 

→   𝑎𝑟𝑟𝑜𝑡𝑜𝑛𝑑𝑜 𝑎 1.346 (𝑐𝑖𝑜è 𝑎𝑢𝑚𝑒𝑛𝑡𝑜 𝑙𝑎 𝑞𝑢𝑎𝑟𝑡𝑎 𝑐𝑖𝑓𝑟𝑎 𝑑𝑖 𝑢𝑛𝑜) 
 

 

1.3456 𝑎𝑟𝑟𝑜𝑡𝑜𝑛𝑑𝑖𝑎𝑚𝑜 𝑎 2 𝑐𝑖𝑓𝑟𝑒 

→ 𝑔𝑢𝑎𝑟𝑑𝑜 𝑙𝑎 𝑡𝑒𝑟𝑧𝑎 𝑐𝑖𝑓𝑟𝑎  

→ è 𝑢𝑛 4 𝑐ℎ𝑒 è < 5 

→ 𝑎𝑟𝑟𝑜𝑡𝑜𝑛𝑑𝑜 𝑎 1.3 (𝑐𝑜𝑛𝑓𝑒𝑟𝑚𝑜 𝑙𝑎 𝑠𝑒𝑐𝑜𝑛𝑑𝑎 𝑐𝑖𝑓𝑟𝑎) 
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Ordine di grandezza 
 

Spesso, quando si confrontano due misure dello stesso tipo di grandezze 

(lunghezze, masse, tempi, ecc.) è conveniente riferirsi all’ordine di 

grandezza piuttosto che al semplice valore ottenuto con tutte le sue cifre 

significative. In generale la definizione di ordine di grandezza che si può 

consultare su vari testi può cambiare leggermente, noi lo definiremo nel 

seguente modo:  

 

 

Si definisce ordine di grandezza di una determinata misura la 

potenza del 10 più vicina alla misura stessa accompagnata 

dall’unità di misura della grandezza stessa. 

 

 

 

Esempio:  

La massa del Sole è pari a 1.99 x 10 30 kg. La potenza del 10 più vicina a 

tale numero è 1030   
 

Dunque l’ordine di grandezza della massa del Sole è pari a 1030 kg. 

 

 

 

In generale, se il fattore che accompagna la potenza di 10 è minore di 5, 

l’ordine di grandezza risulta pari alla potenza stessa del 10. Se è maggiore 

di 5, l’ordine di grandezza è pari a 10 elevato all’esponente aumentato di 

un’unità. 

 

 

 

Esempio:   

• La massa dell’elettrone è pari a 9.11 x 10-31 kg 

Essendo 9,11 >5, l’ordine di grandezza della massa dell’elettrone è: 

10−31+1 𝑘𝑔 =  10−30 𝑘𝑔 

 

• L’altezza del Monte Bianco è pari a 4.810 x 103 m 

L’ordine di grandezza dell’altezza del Monte Bianco è pari a 103 m, essendo 

4.810 < 5. 
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Dimensione delle grandezze  
 

Nel precedente paragrafo abbiamo accennato al fatto che l'ordine di grandezza 

di una determinata misura è utile per effettuare dei confronti tra grandezze. 

Ma affinché due grandezze possano essere confrontate, per stabilire, per 

esempio, se il valore di una è maggiore di quello di un'altra, o se i valori sono 

simili, quale caratteristica devono avere?  

 

In generale è necessario, affinché due grandezze possano essere confrontate, 

che esse abbiano le stesse dimensioni, cioè appartengano al medesimo 

“gruppo” di grandezze “simili". Dicendo “simili" intendiamo che è possibile 

stabilire una relazione d'ordine fra loro, cioè determinare quale di esse sia 

maggiore, quale minore…  

 

Grandezze che hanno le stesse dimensioni fisiche si dicono omogenee. 

 È possibile confrontare e sommare tali grandezze. 

 

Esempio:  

L’apertura alare di un aeroplano, l’ampiezza minima 

dello Stretto di Messina, l'altezza del Burj Khalifa sono 

grandezze aventi la stessa dimensione: appartengono alla 

classe delle lunghezze.  

 

In generale le dimensioni fisiche di una grandezza si esprimono con delle 

lettere maiuscole. Per indicare che vogliamo considerare le dimensioni 

fisiche di una grandezza, rappresentiamo il suo simbolo tra parentesi 

quadre.  Indichiamo le lunghezze con L, le masse con M, i tempi con T.  

 

Le costanti numeriche (come 𝜋, 𝑒, coefficienti nelle formule…) e le 

grandezze che sono date dal rapporto di due grandezze omogenee fanno parte 

della categoria delle grandezze adimensionali. Il simbolo con cui si indica 

una grandezza adimensionale è [1]. 

 

 

N.B.: Non confondere la M delle masse con la m minuscola che indica il 

metro!! 

Infatti [m]= L (è una lunghezza). 
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Esempio:  

 

Sia v una velocità, allora: 

 [v] = [m s-1] = L T-1. 

 

 

Sia F una forza, allora: 

[F]= [N]= [kg m s-2] =  

= M L T-2 

 

 

 

 

Analisi dimensionale 
 

Quando scriviamo una relazione fra le grandezze, dobbiamo aver cura, per 

non commettere un errore, che i due membri della relazione (destra e sinistra 

rispetto all'uguale) abbiano le stesse dimensioni fisiche. Non è possibile, 

infatti, per esempio, che una grandezza che ha le dimensioni di una massa sia 

uguale a una grandezza (o a una combinazione di varie grandezze) che ha le 

dimensioni di una forza, e così via. 

 

Esempio:     

𝑎 =  𝑐𝑜𝑠 (𝑡) 
con a lunghezza e t tempo è dimensionalmente errata! 

 

Infatti il coseno deve prendere per argomento (…) una grandezza 

adimensionale (un numero) ed esso “restituisce" parimenti una grandezza 

adimensionale.  

 

È dimensionalmente corretto scrivere: 

 

𝑎 =  𝐴 𝑐𝑜𝑠(𝜔𝑡) 

 

con [𝐴]  =  𝐿    e    [𝜔] = 𝑇−1 
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Per i più grandi… 
 

Analisi dimensionale e semplici relazioni 
 

L'analisi dimensionale è talvolta utile per trovare delle semplici relazioni, 

quando si intuisce la dipendenza di una grandezza fisica da altre grandezze.  

 

Facciamo un esempio! 

 

Come sarà precisato più avanti nel testo del Bignamino, quando un corpo di 

massa m si muove di moto circolare uniforme, su di esso agisce una forza 

centripeta. Se connettiamo un dinamometro a tale massa che si muove, in 

maniera che misuri la forza centripeta, notiamo che essa varia (tenendo le altre 

grandezze costanti) se facciamo variare il raggio della circonferenza, la massa 

dell'oggetto oppure il modulo della sua velocità tangenziale. Quindi 

potremmo scrivere che: 

𝐹 =  𝐹(𝑚, 𝑅, 𝑣)  
dove F indica la forza centripeta, m la massa, R il raggio e v la velocità 

 

 

Le parentesi vicino la F indicano che supponiamo che F sia una funzione (cioè 

dipenda) da R, m e v. Quindi l'espressione di F dovrà essere del tipo: 

𝐹 = 𝑚𝛼  𝑅𝛽 𝑣𝛾    
 

E i due membri dovranno avere le stesse dimensioni fisiche, dunque:  

𝑀 𝐿 𝑇−2 = 𝑀𝛼  𝐿𝛽 𝐿𝛾  𝛵−𝛾 

(scrivo le dimensioni dei due membri) 

 

𝑀 𝐿 𝑇−2 = 𝑀𝛼  𝐿𝛽+𝛾  𝛵−𝛾 

Come detto le dimensioni dovranno essere le stesse, quindi: 

 

𝛼 = 1 

𝛽 + 𝛾 = 1   → 𝛽 = −1 

−𝛾 = −2  → 𝛾 = 2 

 

Quindi F= m v2 / R, che in effetti è l'espressione corretta! 
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Attenzione: questo esempio non deve indurre il lettore a pensare che l'analisi 

dimensionale riesca a predire le esatte relazioni tra le grandezze! Come si può 

comprendere studiando il metodo seguito nell’esempio, non è possibile 

determinare se nell'espressione sono presenti costanti come π o 

coefficienti numerici.  

 

 

Per convincerti di ciò, prova a trovare il 

periodo di un pendolo semplice nel regime 

di piccole oscillazioni, che indichiamo con 

T, sapendo che: 

𝑇 = 𝑇(𝑙, 𝑔)  
con l lunghezza pendolo e g accelerazione di 

gravità.  

 

Confronta poi l'espressione con quella 

corretta, ottenuta applicando il secondo 

principio della dinamica, ossia: 

 𝑇 =  2𝜋 √
𝑙

𝑔
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COORDINATE CELESTI 
 

Misura degli angoli: grado, radiante, ora 
 

L’ampiezza di un arco o del corrispondente angolo al centro si può misurare 

in uno dei seguenti sistemi: 

o Il sistema sessagesimale, che ha come unità di misura il grado.  

IL GRADO 

Il grado è definito come la 360esima parte dell’angolo giro. I suoi 

sottomultipli sono i primi e i secondi.  

❖ 1 grado è diviso in 60 primi, 1°=60’ 

❖ 1 primo è diviso in 60 secondi, 1’=60” 

❖ Quindi, 1 grado equivale a 3600” 

 

 

o Il sistema circolare, che ha come unità di misura il radiante 

IL RADIANTE 

Il radiante (𝑟𝑎𝑑) è l’ampiezza dell’angolo al centro di una 

circonferenza che con i suoi lati intercetta un arco uguale al raggio. 
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Dunque il rapporto tra la misura dell’arco e la misura del raggio è un numero 

reale 𝛼 che rimane costante: 

𝛼 =
𝐿

𝑅
 

 𝛼𝑟𝑎𝑑    = 𝛼°
𝜋

180°
 

𝛼° = 𝛼𝑟𝑎𝑑
180°

𝜋
 

L’ampiezza di un radiante è: 

o In gradi 1 𝑟𝑎𝑑 =  57° 17’ 44’’~ 57°,3 

o In primi 1 𝑟𝑎𝑑 ~3438’ 

o In secondi 1 𝑟𝑎𝑑  ~206265’’ (numero magico!!!!) 

 

In astronomia è necessario molto spesso convertire la misura in gradi di un 

arco in misura di ora o viceversa. L’ampiezza di un angolo giro misurato in 

gradi è 360°, che in ore sono 24h: 

1ℎ  =
360°

24ℎ
 =  15° 

1𝑚 = 15′ 

1𝑠 = 15" 

Ricorda il numero 

magico: 206265. Ti 

servirà in seguito… 
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Distanze dei corpi celesti 
 

La distanza dei corpi celesti viene determinata attraverso la misura di un 

angolo detto parallasse. L’angolo di parallasse è l’angolo sotto cui viene visto 

un oggetto se osservato da due posizioni diverse. 

Si parla di parallasse geocentrica 

quando la distanza tra le due 

osservazioni è uguale al raggio 

terrestre, mentre di parallasse annua 

quando la distanza tra i due 

osservatori è uguale al semiasse maggiore dell’orbita della Terra intorno al 

Sole (ovvero l’Unità Astronomica). In figura, p è l’angolo di parallasse e d la 

distanza dell’osservatore dell’oggetto. La relazione tra la distanza e la 

parallasse è data dalla semplice formula: 

𝑑 =
𝑟

𝑠𝑖𝑛𝑝
 

Spesso viene usato il parsec come unità di 

misura delle distanze stellari. Tale unità di 

misura è così definita: un corpo celeste si 

trova alla distanza di 1 parsec (1 pc) quando 

la sua parallasse annua è di 1 secondo 

d’arco (1”).  

Grazie all’introduzione del parsec, la 

formula della parallasse si semplifica 

ulteriormente:  

𝑑(𝑝𝑐) =
1

𝑝"
 

Come si può vedere, se 𝑝 = 1”, allora 𝑑 è proprio 1 𝑝𝑐. 
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Dimensioni apparenti di un oggetto 
 

 

Le dimensioni apparenti di 

un oggetto dipendono dalla 

sua distanza. In astronomia 

il diametro angolare (o 

dimensione angolare) di un 

oggetto è la misura del suo 

diametro rispetto alla 

distanza dall’osservatore, 

cioè l’angolo sotto il quale, 

alla detta distanza, si vede 

l’oggetto. Si calcola con la 

seguente formula: 

𝛼 = 2 tan−1
𝐷

2𝑑
 

Dove D è il diametro reale 

dell’oggetto e d la distanza dall’osservatore. 

Generalmente, il diametro apparente dei corpi celesti è inferiore ad 1° 

 

Si può fare anche il processo inverso: misurato il diametro apparente in 

secondi d’arco di può calcolare il diametro reale dell’oggetto con la seguente 

formula: 

𝐷 =
𝑑 ∗ 𝛼"

206265
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Sistemi di riferimento astronomici 
 

Gli elementi che definiscono i sistemi di coordinate astronomiche sono: 

1. Una direzione fondamentale; 

2. Un piano perpendicolare alla direzione fondamentale; 

3. Un’origine; 

4. Un verso di percorrenza; 

5. Una unità di misura.  

 

 

Sistema altazimutale 
 

Nel sistema altazimutale o orizzontale la direzione fondamentale è data dalla 

verticale e il piano perpendicolare è dato dall’orizzonte astronomico. La 

verticale alla superficie terrestre passante per l'osservatore individua lo zenit 

e il nadir. Le coordinate in questo sistema sono l’Azimut (A) e l’Altezza (h). 

Azimut (A del punto T): è l'angolo formato dal piano del cerchio verticale 

passante per T e il meridiano astronomico. Si misura in gradi e frazioni di 

grado partendo dal punto cardinale sud nel senso delle lancette dell'orologio 

(orario). Esso corrisponde, nel disegno, all'angolo SOB dove O è l'osservatore 

e B è l'intersezione dell'orizzonte con il cerchio verticale passante per T.  
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Altezza (h del punto T): è l'ordinata sferica di un punto sulla sfera celeste, 

cioè la sua distanza angolare dall'orizzonte misurata lungo il cerchio verticale 

passante per quel punto. Si esprime in gradi e frazioni di grado con valore 

positivo verso lo zenit e negativo verso il nadir. Nel nostro disegno, l'altezza 

del punto T corrisponde all'angolo TOB dove O è l'osservatore e B è 

l'intersezione dell'orizzonte con il cerchio verticale passante per T. L'arco 

complementare dell'altezza si chiama distanza zenitale e nel nostro disegno è 

rappresentata dall'angolo ZOT, dove Z è lo zenit dell'osservatore. La distanza 

zenitale si indica generalmente con z.  

Nel sistema azimutale entrambe le coordinate (azimut e altezza) delle stelle 

variano sensibilmente con il passare del tempo a causa del moto di rotazione 

della Terra. 

 

Sistema orario 
 

Questo sistema di coordinate astronomiche ha come direzione e piano 

fondamentali rispettivamente l'asse del mondo e il piano dell'equatore. Le 

coordinate sferiche di questo sistema sono l’Angolo orario (H) e la   

Declinazione (δ) 

L’angolo orario è la distanza 

angolare tra il cerchio orario che 

passa per il punto e il meridiano 

astronomico. Si misura in ore e 

frazioni di ora lungo l'equatore 

celeste, partendo dal meridiano 

astronomico, in senso orario per 

un osservatore boreale. 

La declinazione rappresenta la 

distanza angolare tra un punto 

della sfera celeste e l'equatore celeste, misurata lungo il cerchio orario che 

passa per tale punto. Si misura in gradi e frazioni di grado, con segno positivo 

verso il polo nord celeste e negativo verso il polo sud. L’origine del sistema è 

il punto M, detto mezzocielo.   

In questo sistema nel corso del giorno le stelle variano il loro angolo orario 

mentre rimane costante la loro declinazione. 
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Sistema equatoriale 
 

Questo sistema di coordinate astronomiche ha come direzione e piano 

fondamentali rispettivamente l'asse del mondo e il piano dell'equatore. Le 

coordinate sferiche di questo sistema sono l’Ascensione retta (AR o 𝛼) e la 

Declinazione (DEC o 𝛿). L'origine è il punto gamma (𝛾), o primo punto 

d’Ariete (o punto vernale), dato dall’intersezione tra l’eclittica e l’equatore 

celeste, punto in cui si trova il Sole il giorno dell’equinozio di primavera. 

L'ascensione retta si misura di 

solito in ore, minuti e secondi 

lungo l'equatore celeste, 

partendo dal punto gamma e 

con senso di percorrenza 

antiorario. 

La declinazione rappresenta la 

distanza angolare tra un punto 

della sfera celeste e l'equatore, 

misurata lungo il cerchio orario 

che passa per tale punto. Si 

misura in gradi e frazioni di 

grado con segno positivo verso 

il polo nord celeste e negativo 

verso il polo sud. 

Le coordinate di questo sistema nel corso del giorno rimangono costanti.  
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Sistema eclitticale  
 

Il sistema eclitticale viene usato solitamente per lo studio dei moti planetari 

che avvengono in prossimità dell’eclittica. Il piano e l’asse fondamentale sono 

rispettivamente il piano dell’eclittica e la sua perpendicolare, che individua 

sulla sfera celeste i poli dell’eclittica. Le coordinate eclitticali sono: 

Longitudine (𝜆): contata dal 

punto 𝛾, da 0° a 360°, in senso 

antiorario (positivo).  

Latitudine (𝛽): è l’arco compreso 

tra l’eclittica e l’astro T, che si 

considera sul cerchio massimo 

passante per i poli dell’eclittica e 

per l’astro stesso. Viene contata da 

0° a 90°, positivamente 

nell’emisfero eclitticale nord, 

negativamente nell’altro.  

Ricordiamo che: 

Si dice coluro equinoziale il cerchio orario che passa per i poli celesti e per i 

punti 𝛾 e della Libra. Il coluro solstiziale invece è il cerchio orario che passa 

per i poli celesti e per i punti dell’eclittica che hanno la massima e la minima 

declinazione (punti dei solstizi). Dodici costellazioni disposte lungo l’eclittica 

formano lo Zodiaco. 

 

  

 

Sistema galattico 
 

Le coordinate galattiche sono legate strettamente al sistema stellare al quale 

apparteniamo: la Galassia. Il piano e l’asse fondamentale di questo sistema 

sono rispettivamente il piano mediano della Via Lattea e il suo asse 

passante per il centro galattico. Il piano della Galassia interseca la sfera 

celeste sull’equatore galattico. Per individuare un astro T nel sistema di 

coordinate galattiche, si fa passare un cerchio massimo per i poli e per T; 

questo interseca l’equatore galattico nel punto B.  
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Le coordinate galattiche sono: 

Longitudine (l): è contata partendo dalla direzione del centro galattico, da 0° 

a 360°, in senso antiorario per un osservatore posto con i piedi sul piano 

galattico e con la testa rivolta verso il polo nord galattico.  

Latitudine (b): è l’arco compreso tra l’astro A e il punto B, contato da 0° a 

90° in senso positivo nell’emisfero nord galattico e negativo nell’altro.  

 

Le coordinate equatoriali del centro galattico e del polo nord galattico, 

fissate convenzionalmente nel 1958 dall’Unione Astronomica Internazionale, 

sono: 

𝑃𝐺 → 𝐴𝑅 = 12ℎ 49min  ; 𝐷𝐸𝐶 = 27.4° 

𝐶𝐺 → 𝐴𝑅 = 17ℎ 42min  ; 𝐷𝐸𝐶 = −28.9° 

B 
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Posizione del centro galattico (segnata con x), posta tra la costellazione del 

Sagittario e quella dello Scorpione. È il punto in cui la Via Lattea appare più 

luminosa, ma a causa delle fredde polveri interstellari sulla linea di vista, non può 

essere studiato nella lunghezza d’onda del visibile, né dell’UV, né dei raggi X a 

debole frequenza. Tutte le informazioni di cui disponiamo ci sono fornite 

dall’osservazione dei raggi gamma, raggi X a forte frequenza, infrarossi e onde 

radio. Dopo una quindicina d’anni di osservazione si è arrivati alla conclusione che 

nella Via Lattea, come al centro della maggior parte delle galassie, vi sia un buco 

nero supermassiccio chiamato Sagittarius A*.  



Bignamino di Astronomia 

   39 

Relazioni tra sistemi di riferimento 
 

Latitudine del luogo 
La latitudine geografica φ di una località 

sulla superficie della Terra è uguale 

l’altezza del polo celeste sul suo 

orizzonte. Orizzonte e Zenit sono 

separati da un angolo retto. La latitudine 

geografica del luogo si ottiene sottraendo 

da 90° la distanza zenitale del polo 

stesso. 

 

𝜑 = ℎ𝑝𝑜𝑙𝑜 = 90° − 𝑧𝑝𝑜𝑙𝑜 

 

FORMULE INVERSE: 

𝑧𝑝𝑜𝑙𝑜 = 90° − ℎ𝑝𝑜𝑙𝑜 = 90° − 𝜑 

 

 

Stelle circumpolari 
Vista da un qualsiasi luogo della superficie terrestre (quando siamo 

all’Equatore la situazione si complica), una parte della volta celeste non 

tramonta mai, e rimane sempre al di sopra dell’orizzonte. Tale parte di cielo è 

detta “circumpolare”. Essa contiene le stelle che hanno declinazione δ 

maggiore o uguale a un valore 

limite che si ottiene sottraendo da 

90° il valore della latitudine 

geografica φ del luogo. 

𝛿 ≥ 90° − 𝜑 

Se la declinazione è compresa tra: 

−(90° − 𝜑) < 𝛿 < 90° − 𝜑 

Le stelle sono occidue: sorgono e tramontano sull’orizzonte dell’osservatore. 
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Se: 

𝛿 < −(90° − 𝜑) 

Quindi: 

𝛿 < 𝜑 − 90° 

Le stelle sono anticircumpolari: non sorgono mai e stanno sempre al di sotto 

dell’orizzonte 

 

 

Culminazione 
Una stella culmina quando raggiunge la sua massima altezza, cioè è sul 

meridiano. La declinazione δ e la distanza zenitale z sono legate in modo 

semplice alla latitudine φ dell’osservatore. 

Al momento della culminazione superiore (massima altezza della stella 

sull’orizzonte) si ha: 

𝑧 = 𝜑 − 𝛿 

Al momento della culminazione inferiore si ha: 

𝑧 = 180° − (φ + δ) 
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Altezza (culminazione inferiore/superiore) 
 

Una stella culmina superiormente 

quando raggiunge la sua massima 

altezza vista un determinato luogo (ad 

una determinata latitudine φ). 

ℎ1 = 90° ± (𝜑 − 𝛿) 

Poiché l’altezza deve essere h ≤ 90°, distinguiamo i due casi: 

1. Se 𝛿 < 𝜑, allora ℎ = 90° − 𝜑 + 𝛿 (si prende il segno meno) 

2. Se 𝛿 > 𝜑, allora ℎ = 90° + 𝜑 − 𝛿 (si prende il segno più) 

Analogamente in culminazione inferiore: 

ℎ2 = −90° + 𝜑 + 𝛿 

 

La formula della 

culminazione inferiore è 

sempre la stessa! 

 

Perché se 𝛿 < 𝜑: 

ℎ2 = 𝛿 − ( 90° − 𝜑) 

ℎ2 = 𝛿 −  90° + 𝜑 

ℎ2 = −90° + 𝛿 + 𝜑 

Se 𝛿 > 𝜑: 

ℎ2 = 𝛿 + (𝜑 − 90°) 

ℎ2 = −90° + 𝛿 + 𝜑 
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FORMULE INVERSE: 

𝜑 = 90° − ℎ + 𝛿  e  𝛿 = 𝜑 + ℎ − 90° 

Latitudine del luogo (culminazione inferiore/superiore) 
Dalla conoscenza dell’altezza di una stella alla culminazione inferiore e di 

quella alla culminazione superiore possiamo stabilire la latitudine del luogo 

di osservazione: 

𝜑 =
ℎ1 + ℎ2

2
 

Questa formula è valida per tutte le stelle 

(ma bisogna fare attenzione! – vd. dopo), 

ma la si usa spesso per conoscere la 

latitudine di un luogo osservando una 

stella circumpolare (infatti, per queste 

stelle riusciamo ad osservare sia la 

culminazione inferiore sia quella 

superiore). La latitudine, infatti, non è 

altro che una “media” tra le due altezze 

(culminazione superiore e inferiore). 

 

FORMULE INVERSE: 

ℎ1 = 2𝜑 − ℎ2 

ℎ2 = 2𝜑 − ℎ1 

Per una stella circumpolare la minima altezza è ℎ𝑚𝑖𝑛 = 𝛿 + 𝜑 − 90° 

È necessario tuttavia spendere qui qualche parola per un “corretto utilizzo” di 

questa relazione, a seconda del valore della declinazione della stella. Le 

osservazioni che seguono (specialmente per quanto riguarda il 2° caso) hanno 

un interesse maggiormente matematico piuttosto che osservativo: se 

volessimo determinare con il metodo delle culminazioni la latitudine di un 

luogo, sceglieremmo di misurare le altezze di una stella circumpolare per quel 

determinato luogo, in maniera tale che la visibilità della stella in entrambe le 

culminazioni sia garantita. Se la stella fosse occidua, infatti, non potremmo 

osservare la culminazione inferiore (e quindi misurarne la corrispondente 

altezza sull’orizzonte)! 
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Iniziamo a esaminare più nel dettaglio la relazione. 
 

Premettiamo che in un dato luogo, la declinazione dello zenit è uguale alla 

latitudine del luogo stesso. Quindi una stella che possiede una declinazione 

maggiore della latitudine del luogo d’osservazione (o, se ci troviamo 

nell’emisfero sud, una declinazione minore della latitudine del luogo 

d’osservazione), culmina superiormente dalla parte del polo “rialzato” 

rispetto allo zenit, cioè il polo visibile da quel dato luogo (polo nord celeste 

se l’osservatore è boreale, polo sud celeste se l’osservatore è australe).  

 

1° caso: δ>φ 

Per semplicità consideriamo un osservatore boreale (si può fare una 

schematizzazione analoga con le dovute accortezze per un osservatore 

australe): nel caso in cui δ > φ, si consideri la situazione di Figura 1. Le altezze 

alla culminazione superiore (h2 in figura) e inferiore (h1 in figura) vengono 

valutate “partendo” dal punto cardinale nord. Quindi se ne faccio la media, 

ottengo proprio l’angolo del punto che sta in mezzo a queste due posizioni. 

Siccome tale punto è il polo nord celeste (PN), ottengo la latitudine del luogo.  

 

   
 

ℎ1 =  𝜑 − 90° + 𝛿 
 

ℎ2 = 90° + 𝜑 − 𝛿 

 Sommando membro a membro le due relazioni: 
 

ℎ1 + ℎ2 = 𝜑 − 90° + 𝛿 +  90° + 𝜑 − 𝛿 = 2𝜑 
 

Figura 1: δ > φ 

Z: zenit; 

h2: altezza culminazione superiore; 

h1: altezza culminazione inferiore; 

PN: polo nord celeste; 

φ: latitudine del luogo d’osservazione. 

Come si può vedere PN è intermedio tra 

le due posizioni della stella. 
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𝜑 =
ℎ1 + ℎ2
2

 

 

2° caso: δ<φ 

Nel caso in cui δ < φ, si ha una situazione in cui bisogna prestare più 

attenzione (Figura 2): 

 

Come detto sopra, la stella culmina superiormente a sud dello zenit, 

dunque l’altezza alla culminazione superiore viene valutata partendo dal 

punto cardinale sud. Viceversa, la stella culmina inferiormente dal “lato 

nord”, quindi è da nord che viene valutata l’altezza a tale culminazione. 

Figura 2: δ < φ 

Z, PN come in Figura 1; 

L’angolo in rosso rappresenta la declinazione della stella; 

L’angolo in viola (h2) rappresenta l’altezza alla culminazione superiore della 

stella; 

L’angolo in verde chiaro (h1) rappresenta l’altezza alla culminazione inferiore 

della stella: tale angolo è ottenuto tracciando la retta parallela all’equatore 

passante per la stella (in figura); 

L’angolo in verde scuro rappresenta la latitudine del luogo d’osservazione. 

S e N sono rispettivamente i punti cardinali Nord e Sud. 
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Date le due “origini” diverse per prendere le altezze, esse non si possono 

“mediare” acriticamente. Bisogna ricondursi a un’altezza alla 

culminazione superiore valutata dal punto nord, per far coincidere le due 

origini. 

 

Naturalmente quest’ultima non è un’altezza vera e propria: sarà maggiore di 

90°, però ci permette di ottenere il risultato voluto: infatti, chiamando 

quest’ultima altezza h’, 
 

ℎ2 = 90° −  𝜑 + 𝛿 

ℎ′ = 180° − ℎ2 = 90° +  𝜑 − 𝛿 

ℎ1 =  𝜑 − 90° + 𝛿 

ℎ′ + ℎ1
2

=
90° +  𝜑 − 𝛿 +  𝜑 − 90° + 𝛿

2
=  𝜑 

 

In Figura 2, h’ è pari al supplementare dell’angolo viola scuro (ℎ2). Dalla 

figura stessa ci si può convincere di come adesso stiamo valutando entrambe 

le “altezze” (o meglio, le distanze angolari prese con il loro segno a seconda 

che la stella sia sopra o sotto l’orizzonte) dal punto cardinale Nord. 

 

Dopo aver letto quest’ultima osservazione, per il lettore sarà facile 

comprendere quanto affermato immediatamente dopo aver fornito la relazione 

all’inizio del paragrafo: il problema posto si può risolvere in ogni caso 

riconducendosi alla stessa origine, tuttavia a livello osservativo l’impiego di 

stelle circumpolari fa sì che l’origine per le altezze sia già la stessa, ossia il 

punto cardinale nord. Infatti una stella circumpolare si discosta “poco” dal 

polo nord celeste! 

 

 

Nota: se avessimo sommato le due altezze in questo secondo caso (δ<φ) e 

diviso per due, avremmo trovato la declinazione della stella come si può 

facilmente intuire dalla Figura 2, che riportiamo di seguito.  
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Infatti sappiamo che: 

 

 

ℎ1 =  𝜑 − 90° + 𝛿 
 

ℎ2 = 90° − 𝜑 + 𝛿 
 

ℎ1 + ℎ2
2

=
 𝜑 − 90° + 𝛿 + 90° − 𝜑 + 𝛿

2
=
2𝛿

2
= 𝛿 

 

Se esaminiamo la figura, possiamo convincerci di nuovo della validità di 

questa relazione: prolungando verso il meridiano sud la semiretta che 

individua la posizione della culminazione inferiore della stella, ci accorgiamo 

che l’intersezione con la sfera celeste di tale prolungamento dista dalla 

posizione della culminazione superiore di un angolo pari a 2δ. Ma tale 

distanza angolare è anche uguale ad h1+h2 (con h1 presa col suo segno 

negativo), dunque divisa per due dà proprio 
2𝛿

2
= 𝛿 
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Distanza zenitale 
 

𝑧 = 90° − ℎ 

 

La distanza zenitale indica quanto dista la 

stella dallo zenit, che si trova sulla verticale 

dell’osservatore. Per trovarla, basta sottrarre 

a 90° (la verticale e l’orizzonte sono separati 

da un angolo retto) l’altezza della stella h. 

 

FORMULE INVERSE: 

ℎ = 90° − 𝑧 

 

 

 

 

 

Ascensione retta 
Tra l’ascensione retta α, il suo angolo orario H ed il tempo siderale relativi ad 

un dato osservatore vale la relazione: 

𝑇𝑠 = 𝛼 + 𝐻 

NOTA: Quando il punto 𝛾 passa al meridiano 𝑇𝑠 = 0 (Il tempo siderale è 

definito come l’angolo orario del punto 𝛾); quando la stella passa al meridiano 

H=0 e: 

𝑇𝑠 = 𝛼 
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Il tempo siderale coincide con l’ascensione retta delle stelle che passano al 

meridiano. Per conoscere l’ascensione 

retta di una stella 𝛼, bisogna calcolare la 

differenza tra il tempo siderale del luogo 

𝑇𝑠 di osservazione e l’angolo orario H 

della stella stessa.  

𝛼 = 𝑇𝑠 −𝐻 

L’angolo orario si trova dalla formula: 

𝐻 = 𝑇𝑠 − 𝛼 

 

 

Coordinate orarie dei punti cardinali Nord e Sud: 

Emisfero boreale: Nord (12ℎ;  90° −  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑖𝑛𝑒) 

    Sud (0ℎ;  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑖𝑛𝑒 −  90°) 

Emisfero australe: Nord (0ℎ;  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑖𝑛𝑒 +  90°) 

     Sud (12ℎ; − 90° −  𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑖𝑛𝑒) 

 

 

 

 

  



Bignamino di Astronomia 

   49 

Declinazione del Sole 
A causa dell’inclinazione dell’eclittica sull’equatore celeste, la declinazione 

del Sole varia in modo non uniforme nel corso dell’anno; una buona 

approssimazione è data dalla relazione: 

𝛿⨀  = 23°27
′ ∗ sin (360° ∗

𝑁 + 284

365
) 

Dove: 

N = numero dei giorni trascorsi dall’inizio dell’anno (1° gennaio) 

Dato da: 

𝑁 = 𝑖𝑛𝑡 (275 ∗
𝑀

9
) − 2𝑖𝑛𝑡 (

𝑀 + 9

12
) + 𝐷 − 30 

Per gli anni ordinari 

𝑁 = 𝑖𝑛𝑡 (275 ∗
𝑀

9
) − 𝑖𝑛𝑡 (

𝑀 + 9

12
) + 𝐷 − 30 

Per gli anni bisestili 1 

Dove:  

M = mese dell’anno 

D = giorno del mese 

 

Ricordiamo che anche per il Sole valgono le seguenti relazioni: 

Se culmina a nord dello Zenit: 

𝜑 =
ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛

2
 

Se culmina a sud dello Zenit: 

𝛿 =
ℎ𝑚𝑎𝑥 + ℎ𝑚𝑖𝑛

2
 

 
1 int significa “parte intera”. Per il calcolo, infatti, bisogna considerare solo la parte 
intera del numero… 
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Coordinate equatoriali del Sole 
 

 

 

1. Equinozio di Primavera 

Il Sole si trova nel punto 𝛾 (dato dall’intersezione tra l’Eclittica e 

l’Equatore), dunque nell’origine del sistema di coordinate equatoriali. 

Perciò le sue coordinate sono: 

𝐴𝑅 = 0ℎ  e 𝛿 = 0° 

 

2. Solstizio d’Estate 

Il Sole si è spostato di 90° (6 ore) dalla posizione 1 (equinozio di 

Primavera) e si trova alla massima distanza dall’equatore (ricordiamo 

che l’angolo tra l’Eclittica e l’Equatore vale 𝜀 = 23° 26′). Le sue 

coordinate sono: 

𝐴𝑅 = 6ℎ  e 𝛿 = + 23° 26′ 
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3. Equinozio d’Autunno 

Il Sole si trova nel punto 𝜔 (anch’esso dato dall’intersezione tra 

l’Eclittica e l’Equatore, ma opposto al punto 𝛾). Dunque le sue 

coordinate sono: 

𝐴𝑅 = 12ℎ  e 𝛿 = 0° 

 

4. Solstizio d’Inverno 

Il Sole si è spostato di 6 ore dal punto 𝜔 e si trova nuovamente alla 

massima distanza dall’Equatore ma al di sotto di esso. Le sue 

coordinate quindi sono: 

𝐴𝑅 = 18ℎ  e 𝛿 = − 23° 26′ 
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Altezza dei pianeti 
 

Per calcolare l’altezza massima dei pianeti utilizziamo la formula: 

ℎ = 90° − 𝜑 + 𝛿 

Dove: 

𝛿 = 𝜀 + 𝑖 

Ricordiamo che 𝜀 è il valore dell’obliquità dell’eclittica (23° 27’ circa) e 𝑖 è 

l’inclinazione dell’orbita del pianeta rispetto ad essa.  

La seguente tabella riporta le varie inclinazioni orbitali di alcuni corpi 

celesti: 

Pianeta/Satellite 𝑖 
Mercurio 7.01° 

Venere 3.39° 

Terra 0.00° 

Luna 5.15° 

Marte 1.85° 

Giove 1.31° 

Saturno 2.49° 

Urano 0.77° 

Nettuno 1.77° 

Plutone  

(pianeta nano) 

 

17.14° 

 

Possiamo notare che tutti i pianeti sono pressappoco allineati lungo 

il piano dell’eclittica (solo Mercurio arriva a 7°). 

 

  



Bignamino di Astronomia 

   53 

TEMPO 
 

Misura del tempo 
 

La misura del tempo viene effettuata dal movimento di rotazione diurna 

della volta celeste (rotazione della Terra) e dal movimento annuo del Sole 

(rivoluzione della Terra attorno al Sole)2.  

La rotazione della Terra attorno al suo asse è quasi costante3 quindi l’angolo 

di rotazione, rispetto ad un qualsiasi riferimento iniziale consente di misurare 

il tempo. Come riferimento iniziale si prende l’istante del passaggio del 

punto al meridiano del luogo. La durata del giorno dipende da questo punto 

scelto. 

In astronomia i punti adottati 

sono:  

• il punto 𝛄;  

• il centro del disco 

apparente del Sole (Sole 

vero);  

• il Sole medio (un sole 

ideale che parte dal punto γ 

assieme al Sole vero e 

 
2 Più precisamente, oggi la misura del tempo non è data dalla rotazione terrestre, 
ma dall’oscillazione dell’atomo di Cesio-133; il secondo è infatti definito, in seguito 
alla decisione della XIII conferenza generale sui pesi e sulle misure del 1967, come la 
durata di 9 192 631 770 periodi della radiazione corrispondente alla transizione tra 
due livelli iperfini, da (F=4, MF=0) a (F=3,MF=09), dello stato fondamentale 
dell’atomo di Cesio-133 (def. confermata dalla 26ª CGPM del 2018). Il secondo così 
definito è chiamato “secondo atomico”.  
3 In realtà, il periodo di rotazione della Terra, a causa delle interazioni mareali e, in 
più modesta parte, dello scioglimento dei ghiacciai alle alte latitudini, aumenta 
lentamente: nel 1900, per esempio, il giorno solare medio si è allungato di 0.002 
secondi atomici e di conseguenza il tempo universale accumula un ritardo rispetto 
al tempo atomico di circa 1 secondo ogni 500 giorni, da cui l’introduzione, 
preferibilmente in data 30 giugno e 31 dicembre, di un cosiddetto secondo 
intercalare (leap second).  
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percorre l’equatore celeste con una velocità angolare costante, in modo da 

ritornare all’equinozio di primavera assieme al Sole vero). 

Le tre unità di tempo definite da questi punti si chiamano:  

• giorno siderale,  

• giorno solare vero,  

• giorno solare medio.  

Il tempo da esse misurato è:  

• tempo siderale,  

• tempo solare vero,  

• tempo solare medio. 

 

 

Nota: Non sono tempi diversi, ma solo diverse unità di 

misurare il tempo! 
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Giorno/tempo siderale 
 

Si definisce giorno siderale 

l’intervallo di tempo compreso tra 

due successivi passaggi del punto 𝛄 

allo stesso meridiano del luogo. 

Si definisce tempo siderale 

l’intervallo di tempo compreso tra il 

passaggio al meridiano del punto di 

primavera ad un’altra posizione 

qualsiasi. 

𝑡𝑠 = H + 𝛼 

(Tempo siderale = angolo orario + ascensione retta, per un astro qualsiasi) 

 

 

 

Giorno/tempo solare vero 
 

Il giorno solare vero è l’intervallo di tempo compreso 

tra due passaggi superiori o inferiori del centro del 

Sole. 

Il tempo solare vero è l’intervallo di tempo compreso 

tra il passaggio inferiore del Sole e il passaggio in un 

altro punto qualsiasi della sua traiettoria apparente 

in cielo.  

Al meridiano il  𝑇𝑠𝑜𝑙𝑒 𝑣𝑒𝑟𝑜 =  𝐻𝑆𝑜𝑙𝑒 𝑣𝑒𝑟𝑜  +12ℎ 
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Giorno/tempo solare medio 

Il giorno solare medio è l’intervallo compreso tra due passaggi superiori o 

inferiori del Sole medio. 

Il tempo solare medio è l’intervallo di tempo compreso tra il passaggio 

inferiore del Sole medio e il passaggio in un altro punto della sua 

traiettoria. 

𝑇𝑠𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜 =  𝐻𝑆𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜 +12ℎ 

 

 

 

Equazione del tempo 
Si definisce equazione del tempo la differenza tra il tempo medio ed il 

tempo solare vero allo stesso istante. 

E= 𝑇𝑠𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜  - 𝑇𝑠𝑜𝑙𝑒 𝑣𝑒𝑟𝑜 

E=  𝐻𝑆𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜 -  𝐻𝑆𝑜𝑙𝑒 𝑣𝑒𝑟𝑜 

E=  𝛼𝑆𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜 -  𝛼𝑆𝑜𝑙𝑒 𝑣𝑒𝑟𝑜 

Il tempo solare medio ad un dato istante è dato dal tempo solare vero più 

l’equazione del tempo:  

   𝑇𝑠𝑜𝑙𝑒 𝑚𝑒𝑑𝑖𝑜= 𝑇𝑠𝑜𝑙𝑒 𝑣𝑒𝑟𝑜  + E 
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Relazione tra tempo solare e tempo siderale 
 

Consideriamo la posizione del Sole a 24 ore di distanza: 

𝑡1𝑠=𝐻𝑠1 + 𝛼𝑆1 

𝑡2𝑠=𝐻𝑠2 + 𝛼𝑆2 

Calcolando la differenza tra le due espressioni si ha: 

𝑡2𝑠- 𝑡1𝑠 = (𝐻𝑠2 −𝐻𝑠1 ) + (𝛼𝑆2 -𝛼𝑆1) 

(𝐻𝑠2 −𝐻𝑠1 ) = 24 

Mentre la differenza in ascensione retta (𝛼𝑆2 -𝛼𝑆1) dà lo spostamento angolare 

diurno del sole medio sull’equatore che in gradi è   
24

365.25
 

Per cui:    

𝑡2𝑠- 𝑡1𝑠 = 24 h + 
24

365.25
 

𝑡2𝑠- 𝑡1𝑠 = 24 (1+ 
1

365.25
) 

𝑡2𝑠- 𝑡1𝑠 = 24 ∗
366.25

365.25
 

 

Un giorno solare medio = 
366.25

365.25
 giorni siderali 

Un giorno siderale = 
365.25

366.25
  giorni solari veri 

 

 

Il rapporto K = 
366.25

365.25
 = 1.002738 serve per convertire gli intervalli di tempo 

solare medio in intervalli di tempo siderali.  

∆𝑇𝑠 = K ∆𝑇𝑚 

Il rapporto K’ = 
365.25

366.25
 = 0.997270 serve per convertire gli intervalli di tempo 

siderali in intervalli ti tempo solare medio:    

∆𝑇𝑚 = K’ ∆𝑇𝑠 
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24 ore di tempo medio corrispondono a 24h 03m 56,55s di tempo siderale; 

viceversa un giorno siderale è 23h 56m 04s di tempo solare medio. 

 

Se s è il tempo siderale ad un certo istante ad un dato meridiano, mentre alla 

mezzanotte precedente sullo stesso meridiano il tempo siderale era S, dalla 

mezzanotte sono passati (𝑠 − 𝑆) ore, minuti, secondi di tempo siderale che 

corrispondono a (𝑠 − 𝑆) ∗ 𝐾’ di tempo solare medio.  

Poiché a mezzanotte il tempo solare medio è 0ℎ, 𝑇𝑚 =  (𝑠 − 𝑆) ∗ 𝐾’ 
rappresenta il tempo solare medio all’istante del tempo siderale s. 

Se al meridiano di quel luogo, alla mezzanotte di una certa data il tempo 

siderale era S, all’istante di tempo medio solare sarà:  

s = S +   𝑇𝑚 ∗ 𝐾 

 

Nota: 

È sempre necessario conoscere il tempo siderale S alla mezzanotte del 

meridiano dato. Per questo sono stati costruiti annuari che forniscono il 

tempo siderale 𝑆0  alla mezzanotte del meridiano fondamentale di GW. 

Il tempo siderale S alla mezzanotte ad una data longitudine 𝜆 è dato da:   

𝑆 =   𝑆0 −
𝜆 ℎ

24ℎ
 (3𝑚 56𝑠. 55) 
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Inoltre, attorno all'equinozio di autunno (circa il 23 settembre) il Sole medio 

si trova nei pressi del punto Ω, che in quel momento si trova al meridiano 

inferiore (mentre il punto 𝛾 è al meridiano superiore).  

Il 23 settembre corrisponde al 256° giorno del nostro calendario ed è proprio 

in questa data che il tempo solare medio e il tempo siderale medio coincidono.  

 

Perciò, se contiamo il numero di giorni in tempo medio (n) trascorsi dal 23 

settembre, si può scrivere la relazione che lega il tempo medio locale e il 

tempo siderale locale: 

 

𝑇𝑆𝐿 − 𝑇𝑀𝐿 = 0.0657 ∗ 𝑛 

 

Conoscendo poi la longitudine del luogo, è possibile riferire il tempo medio 

a Greenwich. 
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Ora locale e longitudine 
 

Si definisce tempo locale medio il tempo regolato sul meridiano del luogo. 

Nella vita quotidiana è scomodo 

utilizzare questo tempo, per cui il 

primo luglio 1919 sono stati 

introdotti i fusi orari. In base a 

questa suddivisione il tempo 

medio è determinato solo per 24 

meridiani geografici principali 

separati da 15° gradi (un’ora). I 

fusi orari sono numerati da 0 a 23 

ed il meridiano passante per GW costituisce l’origine (fuso = 0). 

Il tempo medio locale è dato da: 

𝑡𝑙 = 𝑡𝑓 –Δ𝜆 

Dove: 

Δ𝜆 =  𝜆𝑓 – 𝜆𝑂 

 

Nota: 

1) La differenza tra le ore locali (siderali o solari) di due meridiani 

misurate allo stesso istante è sempre uguale alle differenze di 

longitudini; 

2) Poiché i confini dei fusi orari non distano quasi mai esattamente 7°.5 

dal meridiano centrale la differenza  𝑡𝑙 -  𝑡𝑓  può essere leggermente 

maggiore o minore di ±  𝟑𝟎𝒎. Ciò avviene per ragioni pratiche: 

quando possibile, infatti, i fusi orari hanno dei confini tali da non 

separare in due regioni distinte i territori di un medesimo Stato (ciò 

vale per Stati non troppo estesi in longitudine). 
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Tempo universale 
 

Il tempo solare medio del meridiano di GW si chiama Tempo Universale 

(TU)4. Per quanto precedentemente detto, il tempo medio locale è uguale al 

tempo universale più la longitudine del luogo espressa in ore e considerata 

positiva ad est di GW: 

𝑡𝑙 = TU +𝜆 

 

 

 

 

Anno tropico, civile, solare e siderale 
 

Anno tropico (o solare): è il tempo che intercorre tra due passaggi 

consecutivi del Sole al punto 𝛾: esso corrisponde al compimento del ciclo 

completo delle stagioni.  

Anno civile: viene definito con una durata di 365 giorni esatti, dove ogni 

giorno è inteso come giorno solare medio. Ogni 4 anni, però, introduciamo un 

giorno aggiuntivo alla fine di febbraio portando l’anno civile alla durata di 

366 giorni (anno bisestile). 

Anno siderale: è il tempo necessario affinché la Terra completi la propria 

orbita attorno al Sole 

 

 

 

 
4 Per essere precisi, dal 1972 usiamo il Tempo Universale Coordinato (UTC), che 
scorre come il tempo atomico internazionale e che viene corretto con il famoso 
secondo intercalare (vd. nota 3 sopra) quando ha uno sfasamento superiore a 0.9 
secondi rispetto al tempo universale definito in questo Bignamino.  
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Giorno giuliano (JD) 
Il giorno giuliano (JD, Julian Day) è il numero di giorni passati dal 

mezzogiorno del lunedì 1° gennaio 4713 a.C. Il sistema dei giorni giuliani è 

stato progettato per fornire agli astronomi un singolo sistema di date che 

potesse essere usato per lavorare con differenti calendari e per unificare 

diverse epoche storiche, in quanto non ha anni bisestili, cambi di calendario… 

La data giuliana è il giorno giuliano combinato con la frazione di giorno 

trascorso, a partire dal mezzogiorno del Tempo Universale. Quando si ha a 

che fare con il JD, bisogna tener conto della riforma gregoriana, tramite cui si 

passò dal 4 ottobre al 15 del 1582.  

 

 

PER SAPERNE DI PIÙ… 

Per evitare le complicazioni che si manifestano quando si deve calcolare il 

numero di giorni che intercorrono tra due date, Giuseppe Scaligero (1540-

1609) ideò un modo diverso per indicare i giorni: la data giuliana. Scaligero 

pensò bene a far iniziare il conteggio dei giorni dal mezzodì del 1° gennaio 

del 4712 a.C., una data così lontana che (o almeno così credeva) non fosse 

possibile avere osservazioni astronomiche precedenti. Ricordiamo quindi che 

il giorno giuliano inizia alle ore 12:00 UT.      

 

 

 

Puoi calcolare il giorno giuliano corrispondente ad una 

determinata data a questo link oppure scannerizzando il 

QR code allegato: 

http://www.archaeoastronomy.it/Calcolo%20JD/JD.html  

 

 

 

 

http://www.archaeoastronomy.it/Calcolo%20JD/JD.html
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TABELLA DI DATA GIULIANA 

 

Anno JD - Gen Feb Mar Apr Mag Giu Lug Ago Set Ott Nov Dic 

1970 2440 587 618 646 677 707 738 768 799 830 860 891 921 

1971 2440 952 983 *011 *042 *072 *103 *133 *164 *195 *225 *256 *286 

1972 2441 317 348 377 408 438 469 499 530 561 591 622 652 

1973 2441 683 714 742 773 803 834 864 895 926 956 987 *017 

1974 2442 048 079 107 138 168 199 229 260 291 321 352 382 

1975 2442 413 444 472 503 533 564 594 625 656 686 717 747 

1976 2442 778 809 838 869 899 930 960 991 *022 *052 *083 *113 

1977 2443 144 175 203 234 264 295 325 356 387 417 448 478 

1978 2443 509 540 568 599 629 660 690 721 752 782 813 843 

1979 2443 874 905 933 964 994 *025 *055 *086 *117 *147 *178 *208 

1980 2444 239 270 299 330 360 391  421 452 483 513 544 574 

1981 2444 605 636 664 695 725 756 786 817 848 878 909 939 

1982 2444 970 *001 *029 *060 *090 *121 *151 *182 *213 *243 *274 *304 

1983 2445 335 366 394 425 455 486 516 547 578 608 639 669 

1984 2445 700 731 760 791 821 852 882 913 944 974 *005 *035 

1985 2446 066 097 125 156 186 217 247 278 309 339 370 400 

1986 2446 431 462 490 521 551 582 612 643 674 704 735 765 

1987 2446 796 827 855 886 916 947 977 *008 *039 *069 *100 *130 

1988 2447 161 192 221 252 282 313 343 374 405 435 466 496 

1989 2447 527 558 586 617 647 678 708 739 770 800 831 861 

1990 2447 892 923 951 982 *012 *043 *073 *104 *135 *165 *196 *226 

1991 2448 257 288 316 347 377 408 438 469 500 530 561 591 

1992 2448 622 653 682 713 743 774 804 835 866 896 927 957 

1993 2448 988 *019 *047 *078 *108 *139 *169 *200 *231 *261 *292 *322 

1994 2449 353 384 412 443 473 504 534 565 596 626 657 687 

1995 2449 718 749 777 808 838 869 899 930 961 991 *022 *052 

1996 2450 083 114 143 174 204 235 265 296 327 357 388 418 

1997 2450 449 480 508 539 569 600 630 661 692 772 753 783 

1998 2450 814 845 873 904 934 965 995 *026 *057 *087 *118 *148 

1999 2451 179 210 238 269 299 330 360 391 422 452 483 513 

2000 2451 544 575 604 635 665 696 726 757 788 818 849 879 

 

* (questo simbolo indica che il “prefisso” del giorno riportato nella colonna “JD-” è 

aumentato di 1) 

 

Le date riportate in tabella si riferiscono al giorno 0 del mese 

Es: 16 𝑛𝑜𝑣𝑒𝑚𝑏𝑟𝑒 1984 =  2446005 + 16 = 2446021 𝐽𝐷 
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MECCANICA CELESTE 
 

Moto apparente dei pianeti 
 

I pianeti si muovono in vicinanza dell’eclittica, ma il loro movimento visto 

dalla Terra è più complicato di quello del Sole e della Luna. Il Sole e la Luna, 

rispetto alle stelle fisse, si muovono di moto diretto, cioè antiorario. Per i 

pianeti si osserva, in generale, che essi si muovono di moto diretto; tuttavia, 

in alcuni tratti, variabili da pianeta a pianeta, il loro moto è retrogrado: il 

pianeta, dopo avere raggiunto una 

posizione di stazionarietà, inverte 

il moto, descrivendo una 

traiettoria tipicamente a forma di 

cappio. Ciò è molto più evidente 

per i pianeti interni Mercurio e 

Venere, che oscillano avanti e 

indietro rispetto alla posizione del 

Sole, venendosi a trovare ora da 

una parte ora dall’altra rispetto ad 

esso. Quando il pianeta è in 

congiunzione superiore è 

invisibile, perché sorge e tramonta 

con il Sole. Continuando nel suo 

moto apparente, dopo qualche 

tempo potrà essere visto dopo il tramonto ad occidente (si troverà a sinistra 

del Sole). L’elongazione orientale (cioè la distanza angolare del pianeta dal 

Sole quando il pianeta si trova a sinistra del Sole) cresce nei giorni seguenti; 

contemporaneamente, però, decresce la sua velocità angolare apparente. 

Quando il pianeta raggiunge la stessa velocità angolare del Sole, per qualche 

istante si muove mantenendo la stessa distanza angolare dall’astro diurno: il 

pianeta ha in questo momento raggiunto la massima elongazione orientale. 

Per Venere la massima elongazione è di circa 46°, per Mercurio varia dai 18° 

ai 28°. Da questo momento il pianeta comincia il suo avvicinamento al Sole 

ritornando, con moto retrogrado, in congiunzione con esso ma questa volta in 

configurazione di congiunzione inferiore. Il pianeta è adesso invisibile, a 

meno che esso non transiti sul disco del Sole: in questo caso, con opportuni 

strumenti (come ad esempio un telescopio), è possibile osservarne il disco che 

si proietta su quello del Sole! Continuando nel suo moto retrogrado, il pianeta 
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si sposta via via verso occidente (a destra del Sole) ed è visibile prima del 

sorgere del Sole (elongazione occidentale).  

La figura alla pagina precedente mostra che i pianeti inferiori non possono 

mai trovarsi in quadratura o opposizione, cioè l’angolo Sole-Terra-Pianeta 

non potrà mai essere uguale rispettivamente a 90° o 180° (in generale, 

quest’angolo non potrà mai essere più grande dell’elongazione massima, 

nettamente inferiore a 90°). 

I pianeti esterni invece possono assumere qualsiasi distanza dal Sole (da 0° a 

180°) e quindi possono trovarsi nelle 

due precedenti configurazioni. 

Raggiunta l’elongazione massima di 

180°, il pianeta si trova dalla parte 

opposta a quella del Sole, la velocità 

retrograda è massima ed esso 

raggiunge anche il massimo della 

luminosità.  

Oggi noi sappiamo che il moto 

apparente dei pianeti è il risultato 

della composizione del moto della 

Terra e di quello dei pianeti attorno 

al Sole: semplicemente ciò vuol dire 

che noi osserviamo un oggetto in 

movimento essendo noi stessi in movimento. Le velocità dei pianeti variano: 

più sono vicini al Sole, più velocemente si muovono. I due pianeti interni, 

essendo più vicini al Sole, sorpassano la Terra durante il loro moto, mentre è 

la Terra a sorpassare i pianeti esterni quando sono vicini all’opposizione: ecco 

perché essi sembrano muoversi all'indietro.  

Se indichiamo con T il nostro anno siderale, con P il periodo sidereo del 

pianeta e con S il periodo sinodico (il tempo intercorso tra due congiunzioni 

o due opposizioni successive) la composizione delle velocità ci consente di 

calcolare la velocità relativa del pianeta rispetto alla Terra. 

Per i pianeti interni (la Terra si muove più lentamente): 

2𝜋

𝑆
 = 

2𝜋

𝑃
 - 
2𝜋

𝑇
     

  
𝟏

𝑺
 = 

𝟏

𝑷
 - 
𝟏

𝑻
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Per i pianeti esterni (la Terra si muove più velocemente): 

2𝜋

𝑆
 = 

2𝜋

𝑇
 - 
2𝜋

𝑃
     

  
𝟏

𝑺
 = 

𝟏

𝑻
 - 
𝟏

𝑷
 

 

Marte, Giove e Saturno (i pianeti esterni visibili ad occhio nudo) si possono 

trovare dunque in qualsiasi posizione lungo l'eclittica - anche a mezzanotte, 

in posizione direttamente opposta a 

quella del Sole -: quando questo 

avviene raggiungono il massimo 

della luminosità. Marte sembra 

muoversi più rapidamente, Giove un 

po' meno, e Saturno è il più lento. La 

loro velocità varia: più sono vicini 

al Sole e più rapidamente si 

muovono (vedi la sezione “terza 

legge di Keplero”). Quando i tre 

pianeti esterni sono vicini 

all'opposizione, la Terra, che orbita 

più vicina al Sole, li sorpassa, e 

quindi essi sembrano muoversi 

all'indietro. Il moto retrogrado dei 

due pianeti interni ha una causa 

simile. Essendo più vicini al Sole, 

sono essi che sorpassano la Terra 

durante il loro moto.  
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TRA CONCILI E CONGIUNZIONI SINODICHE… 

Il termine “sinodico” deriva dal latino 

synodicum, a sua volta ricavato dal greco 

𝜎𝜐𝜈𝜊𝛿𝜄𝜅𝜊́𝜍 (synodikós) derivato da 𝜎𝜐𝜈𝜊𝛿𝜊𝜍 

(synodos) “riunione, concilio”, le cui radici 

sono 𝜎𝜐́𝜈 «con, insieme» e ὁ𝛿𝜊́𝜍 «via» e quindi 

camminare insieme, allinearsi… 
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Sommario di quanto è noto oggi sui pianeti 
 

Viene qui riportato un breve sommario dei componenti del sistema solare. In 

genere vengono distinte quattro classi di oggetti:      

1. I pianeti maggiori, in ordine di distanza dal Sole - Mercurio, Venere, 

Terra, Marte, Giove, Saturno, Urano e Nettuno. Tutti tranne i due 

più interni hanno dei satelliti, e tutti e quattro i più esterni hanno degli 

anelli, composti da piccoli ciottoli di materia in orbita attorno al 

pianeta.  

2. Asteroidi o pianetini, in maggioranza - anche se non tutti - posti tra 

Marte e Giove. Il loro diametro arriva fino a 500 km.  

3. La "fascia di Kuiper" composta da oggetti ghiacciati oltre l'orbita di 

Nettuno, di cui il più noto (anche se secondo per dimensioni, come 

recentemente scoperto) è Plutone, scoperto nel 1930 e delle 

dimensioni della nostra Luna. La fascia ha preso il nome 

dell'astronomo belga Gerard Kuiper, si estende probabilmente a una 

distanza doppia di quella di Nettuno e si stima che consista di circa 

100 000 oggetti (finora ne sono stati identificati circa 1 000), molti 

dei quali con un diametro di soli 100 km o meno.  
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4. Comete, tradizionalmente divise in "non ricorrenti" (il nome ufficiale 

è "comete a lungo periodo") e comete "periodiche". Si ritiene che le 

comete non ricorrenti provengano dalla "nube di Oort", un enorme 

agglomerato quasi sferico di oggetti ghiacciati agli estremi limiti del 

sistema solare. Tali oggetti sono debolmente legati al Sole e, di tanto 

in tanto, l'attrazione gravitazionale di qualche stella lontana cambia 

lievemente il moto di alcuni di essi, lanciandoli in direzione del Sole. 

Se si verifica tale eventualità, essi diventano visibili come comete, 

quando la radiazione del Sole fa evaporare una parte della loro 

superficie generando la chioma e la coda della cometa. Un tempo le 

comete periodiche si ritenevano oggetti inizialmente non ricorrenti, 

la cui traiettoria era poi stata deviata facendo sì che esse venissero 

catturate dall'attrazione gravitazionale dei pianeti più grandi. Oggi si 

ritiene che provengano dalla fascia di Kuiper, in particolare dalla 

classe di oggetti noti come Centauri. 
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Moti millenari della Terra 
 

Oltre ai moti di rotazione e rivoluzione, la Terra è soggetta anche a movimenti 

che si sviluppano su lunghissimi intervalli di tempo, noti come moti 

millenari. Questi fenomeni sono causati principalmente dall’azione 

gravitazionale esercitata dal Sole, dalla Luna e dagli altri pianeti del Sistema 

Solare. I moti millenari si suddividono in due grandi categorie:  

• Variazioni dell’asse di rotazione. L’asse di rotazione della Terra, 

oggi, è inclinato di circa 23.5° rispetto al piano dell’orbita terrestre, 

l’eclittica. Questa   inclinazione non è costante: varia lentamente, in 

un periodo di circa 41.000 anni, da 22.1° e 24.5. In   circa 26.000 anni, 

la direzione verso cui punta l’asse cambia spostando il polo celeste da 

una stella all’altra. Il fenomeno che descrive questa rotazione 

millenaria dell’asse terrestre è detto precessione.  

  

 

 

 

 

 

 

 

Durante il moto di rivoluzione attorno al Sole, l’asse di rotazione 

terrestre tende a mantenere la propria orientazione nello spazio. 

Questo comportamento è spiegato dalla conservazione del momento 

angolare, una grandezza vettoriale che, in assenza di forze esterne, si 

mantiene costante in modulo, direzione e verso. La Terra, ruotando 

su se stessa, si comporta come un giroscopio: resiste alle 

sollecitazioni che tentano di modificarne l’assetto rotazionale, 

mantenendo stabile il proprio asse. Tuttavia, la Terra non è una sfera 

perfetta: ha la forma di un ellissoide oblato, cioè leggermente 

schiacciata ai poli e rigonfia all’equatore. Questo rigonfiamento 

equatoriale è il risultato della rotazione terrestre e rappresenta una 
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massa eccedente rispetto alla forma sferica. Le forze gravitazionali 

esercitate dal Sole, dalla Luna e, in misura minore, dagli altri pianeti, 

agiscono su questa massa eccedente in modo differenziale: 

l’attrazione è più intensa sull’equatore che sui poli. Ne deriva una 

coppia di forze che genera un momento torcente che agisce 

perpendicolarmente al momento angolare e tende a riallineare l’asse 

di rotazione perpendicolarmente al piano dell’eclittica. Il nostro asse 

di rotazione, ruotando, genera una risposta dinamica e, invece di 

riallinearsi alla perpendicolare all’eclittica, si muove attorno ad esso   

di moto circolare. Questo fenomeno è noto come precessione assiale. 

L’asse terrestre sembra descrive un cono nello spazio, con vertice al 

centro della Terra, completando un giro completo in circa 26.000 

anni, periodo chiamato anno platonico.  

Poiché l’equatore celeste è perpendicolare all’asse terrestre, 

anch’esso segue il moto di precessione, modificando gradualmente la 

sua orientazione rispetto alle stelle fisse. Di conseguenza, anche la 

linea degli equinozi, l’intersezione tra l’equatore celeste e il piano 

dell’eclittica,  ruota nello spazio con la stessa velocità angolare 

dell’asse ed il punto γ, intersezione tra l’equatore celeste ed l’eclittica 

che definisce l’equinozio di primavera ed è stato assunto come origine 

del sistema equatoriale, anticipa di 50.3 secondi d’arco ogni anno, per 

cui il Sole incontra il punto γ ogni anno in anticipo rispetto all'anno 

precedente, da cui il termine “precessione degli equinozi”.  

Ai tempi di Ipparco il Sole, all’equinozio di primavera, si proiettava 

nella costellazione d’Ariete, oggi nei Pesci, la prossima sarà la 

costellazione dell’Acquario che, appunto, precede la costellazione dei 

Pesci. Il polo nord celeste, che oggi cade abbastanza vicino alla stella 

Alpha dell’Orsa Minore, tra 14.000 anni si troverà in vicinanza della 

stella Vega della costellazione della Lira. 

• La precessione luni-solare. È dovuta per 2/3 circa alla Luna ed il 

restante 1/3 al Sole. L’orbita che la Luna percorre attorno al nostro 

pianeta non è complanare alla nostra. La interseca in due punti, i nodi, 

e l’angolo tra i due piani è di circa 5°. Varia nel tempo, e determina 

una consistente variazione della posizione del piano orbitale del 

nostro satellite: il fenomeno che ne deriva è la retrogradazione dei 

nodi. Per effetto di questa variazione il momento della quantità di 

moto della Terra non ruota in modo uniforme attorno all’asse 

dell’eclittica e conseguentemente, il polo nord celeste non si muove 

di moto circolare uniforme ma presenta un moto oscillatorio, che lo 

porta ad avvicinarsi e ad allontanarsi dal polo nord dell’eclittica. 
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Questo fenomeno prende il nome di nutazione, ha un periodo di 18.6 

anni coincidente con il periodo di retrogradazione dei nodi.  

La comprensione del moto di precessione è essenziale per lo studio della 

dinamica terrestre, in quanto comporta importanti conseguenze in ambito 

astronomico. Nel corso dei millenni, esso determina una variazione della 

posizione apparente delle stelle nel cielo, modifica progressivamente la 

data degli equinozi e incide sulla misurazione del tempo, influisce sul 

clima su scala geologica modificando la distribuzione stagionale della 

radiazione solare, contribuendo ai cicli glaciali e interglaciali descritti 

dalla teoria di Milanković. 
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Le leggi del moto dei pianeti 
 

Prerequisito: l’ellisse 
 

Luogo geometrico dei punti del piano per i quali si mantiene costante la 

somma delle distanze da due punti fissi detti fuochi.  

Detta in parole più 

semplici, l'ellisse non è 

altro che una circonferenza 

“schiacciata". Un elemento 

fondamentale che ci 

permette di capire di 

quanto questa viene 

compressa è l'eccentricità 

e. L'eccentricità è definita 

come il rapporto tra la 

semidistanza focale e il 

semiasse maggiore: 

𝑒 =
𝑐

𝑎
 

 

FORMULE INVERSE:        

𝑐 = 𝑎𝑒 

𝑎 =
𝑐

𝑒
 

 

Infatti, nell'ellisse possiamo individuare:  

• Semiasse maggiore (a) 

• Semiasse minore (b)  

• Semidistanza focale (c)  

 

Indicheremo quindi con 2a il semiasse maggiore (AB), con 2b il semiasse 

minore (CD) e con 2c la distanza focale (F1F2).  
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ATTENZIONE: 

L’eccentricità dell'ellisse è SEMPRE compresa tra 0 e 1 (0 < e < 1). Se questa 

fosse uguale a 0, i due fuochi andrebbero a coincidere con l'origine e l'ellisse 

diventerebbe una circonferenza. Se fosse uguale a 1, diventerebbe una 

parabola; se fosse e > 1 diventerebbe una iperbole. 

 

Dando un’occhiata alla figura, si nota che la somma delle distanze dai due 

punti fissi detti fuochi non è solo costante, ma è anche pari alla lunghezza 

dell'asse maggiore (2a). Quindi, si può anche applicare il teorema di 

Pitagora5:  

𝑎2 = 𝑏2 + 𝑐2 

 

FORMULE INVERSE:  

𝑏2 = 𝑎2 − 𝑐2 

𝑐2 = 𝑎2 − 𝑏2 

 

  

 
5 Poiché (vd. figura): 𝐶𝐹1 = 𝐶𝐹2 , 𝐶𝐹1 + 𝐶𝐹2 = 2𝑎 si può scrivere come  2𝐶𝐹2 = 2𝑎. 
Semplificando: 𝐶𝐹2 = 𝑎 
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LE LEGGI DI KEPLERO 
 

Prima legge di Keplero 
 

Enunciato: i pianeti descrivono intorno al Sole orbite ellittiche, in cui 

questo occupa uno dei fuochi.  

Si può quindi notare 

che la distanza di un 

pianeta attorno al 

Sole non si mantiene 

costante, bensì ci 

sarà un punto in cui 

questo sarà più 

vicino al Sole 

(perielio) e uno in 

cui sarà più lontano 

(afelio). 

 

Possiamo quindi calcolare le due distanze:  

𝑑𝑎 = 𝑎(1 + 𝑒) 

𝑑𝑝 = 𝑎(1 − 𝑒) 

 

FORMULE INVERSE:  

𝑎 =
𝑑𝑎
1 + 𝑒

 

𝑎 =
𝑑𝑝

1 − 𝑒
 

𝑒 =
𝑑𝑎
𝑎
− 1  

𝑒 = 1 −
𝑑𝑝
𝑎
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Inoltre, si nota anche che dalla somma delle due distanze otteniamo l'asse 

maggiore dell'orbita: 

2𝑎 = 𝑑𝑎 + 𝑑𝑝  

E il semiasse è quindi dato da:  

𝑎 =
𝑑𝑎 + 𝑑𝑝

2
 

 

FORMULE INVERSE: 

𝑑𝑎 = 2𝑎 − 𝑑𝑝 

𝑑𝑝 = 2𝑎 − 𝑑𝑎 

 

 

 

La distanza focale è data dalla differenza delle due distanze:  

2𝑐 = 𝑑𝑎 − 𝑑𝑝 

𝑐 =
𝑑𝑎 − 𝑑𝑝

2
 

FORMULE INVERSE: 

𝑑𝑎 = 2𝑐 + 𝑑𝑝 

𝑑𝑝 = 𝑑𝑎 − 2𝑐 

 

 

Quindi l'eccentricità dell’orbita può essere anche scritta come: 

𝑒 =
𝑑𝑎 − 𝑑𝑝
𝑑𝑎 + 𝑑𝑝

=
2𝑐

2𝑎
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Seconda legge di Keplero 
 

Enunciato: il raggio vettore che congiunge il Sole al pianeta spazza aree 

uguali in tempi uguali  

 

Dalla seconda legge comprendiamo che la 

velocità del pianeta intorno al Sole non è 

costante: al perielio viaggerà più velocemente 

che all'afelio. Quindi, si può affermare che le 

velocità sono inversamente proporzionali alle 

distanze:  

 

𝑉𝑎
𝑉𝑝
=
𝑑𝑝
𝑑𝑎

 

 

 

FORMULE INVERSE: 

𝑉𝑎 =
𝑑𝑝 𝑉𝑝

𝑑𝑎
 

𝑉𝑝 =
𝑉𝑎  𝑑𝑎
𝑑𝑝

 

𝑑𝑎 =
𝑉𝑝 𝑑𝑝
𝑉𝑎

 

𝑑𝑝 =
𝑉𝑎  𝑑𝑎
𝑉𝑝
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Terza legge di Keplero 
 

Enunciato: i cubi dei semiassi maggiori sono proporzionali ai quadrati dei 

periodi di rivoluzione 

 

𝑎3

𝑇2
= 𝑘 

 

Dalla terza legge, si 

nota che esiste una 

relazione tra periodo di rivoluzione e lontananza dal corpo centrale. Sono 

infatti legati tra loro dal valore di una costante che è stata indicata con k.  

Per i corpi orbitanti intorno ad una massa comune (come ad esempi o per i 

corpi del Sistema solare) questa legge può essere anche scritta come: 

𝑎𝑡
3

𝑇𝑡
2 =

𝑎𝑚
3

𝑇𝑚
2

 

=
𝑎𝑠
3

𝑇𝑠
2 = ⋯ 

 

PER I CORPI DEL SISTEMA SOLARE (che orbitano intorno al Sole), 

se si inserisce in formula il valore del semiasse maggiore in unità 

astronomiche (UA) e il periodo di rivoluzione in anni, il valore della costante 

è uguale a 1. Infatti, ricavandola per la Terra:  

(1 𝑈𝐴)3

(1 𝑎𝑛𝑛𝑜)2
= 1 

 

E se 𝑘 = 1 per la Terra, vale per tutti gli altri corpi orbitanti intorno al Sole.  
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LEGGE DI GRAVITAZIONE UNIVERSALE 
 

Con le leggi di Keplero siamo ancora in quella parte di fisica che descriviamo 

come cinematica: descriviamo perfettamente i moti dei pianeti ma non 

risaliamo alle cause. Newton avanzò l’ipotesi che sia i gravi in caduta libera   

che i pianeti vengono deviati dalla condizione di moto rettilineo uniforme 

dall’esistenza di una forza centrale. Nel 1684 Newton, “poggiandosi sulle 

spalle dei giganti” (Keplero ed il nostro Galilei), dimostrò che la forza che fa 

“fluttuare” i pianeti attorno al Sole dipende dall’inverso del quadrato della 

distanza da esso.  

Integrando il suo secondo principio della dinamica con la terza legge di 

Keplero perviene a: 

𝐹𝑔=
4𝜋2 𝑚

𝐾𝑟2
 

Questa forza deve dipendere anche dalla massa M del Sole ed allora:  

𝐹𝑔=
4𝜋2 𝑚𝑀

𝑀𝐾𝑟2
 

Dove K è la costante della terza legge di Keplero. Ponendo la quantità: 

4𝜋2 

𝑀𝐾
= 𝐺 

(notare che contiene la costante K e la massa del Sole) otteniamo la nota 

formula: 

𝐹𝑔 =
𝐺 𝑚𝑀

𝑟2
  

 

Newton dedusse che questa legge è valida 

non solo per i corpi del sistema solare ma in 

tutto l’Universo: è la Legge di Gravitazione 

Universale.  Nel 1798 Cavendish ideò la 

bilancia a torsione e trovò il valore per la 

costante 𝐺 =  6,67 × 10⁻¹¹ 𝑁 𝑚²/𝑘𝑔2   6. 

 
6 Il valore della costante G, misurato in seguito da diversi esperimenti, è rimasto oggi 
praticamente lo stesso con solo poche cifre decimali in più:                          
6.67384(80) ∗ 10−11ecc ecc… 



 Bignamino di Astronomia 
 

 80  
  

TERZA LEGGE DI KEPLERO GENERALIZZATA 

 
Approssimando l’orbita di un corpo a circolare e considerando trascurabile 

la massa del corpo orbitante, la condizione di equilibrio per la quale esso 

orbita è data da: 

𝐹𝑐 = 𝐹𝑔 

𝐹𝑜𝑟𝑧𝑎 𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎 = 𝐹𝑜𝑟𝑧𝑎 𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑧𝑖𝑜𝑛𝑎𝑙𝑒 

La forza centrifuga è espressa come:  

𝐹𝑐 = 𝑚 𝑎𝑐 

E quella gravitazionale (dalla legge di gravitazione universale di Newton) 

come:  

𝐹𝑔 =
𝐺𝑀𝑚

𝑎2
 

Sostituendo in formula:  

𝑚𝑎𝑐 =
𝐺𝑀𝑚

𝑑2  
 

Notiamo che, semplificando m, otteniamo un modo per esprimere 

l’accelerazione: 

𝑎𝑐 =
𝐺𝑀

𝑑2
 

Ma tale accelerazione, essendo essa centripeta, equivale anche a: 

𝑎𝑐 =
𝑣2

𝑎
=
4𝜋2𝑎2

𝑇2𝑎
=
4𝜋2𝑎

𝑇2
 

Sostituendo in formula:  

4𝜋2𝑎

𝑇2
=
𝐺𝑀

𝑎2
 

Da cui:  

𝑎3

𝑇2
=
𝐺𝑀

4𝜋2
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FORMULE INVERSE: 

𝑎 = √
𝐺𝑀 𝑇2

4𝜋2

3

 

𝑇 = √
4𝜋2𝑎3

𝐺𝑀
 

𝑀 =
4𝜋2𝑎3

𝐺 𝑇2
 

 

Nota: nel caso in cui la massa del corpo orbitante non fosse trascurabile, la 

terza legge di Keplero generalizzata diventerebbe:  

𝑑3

𝑇2
=
𝐺 (𝑀 +𝑚)

4𝜋2
 

 

Nel Sistema solare la somma delle due masse si considera uguale alla sola 

massa del Sole data la relativa piccola massa dei pianeti. 

 

NOTA: 

I corpi   lasciati cadere verso il basso, quando la resistenza dell’aria è 

trascurabile, cadono con la stessa accelerazione g, detta accelerazione di 

gravità. Sulla superficie terrestre l’accelerazione di gravità è g = 9,8 m/s2. In 

realtà il valore di g cambia da punto a punto, perché dipende fra l’altro 

dall’altezza del punto sul livello del mare e dalla sua latitudine. Ora che 

conosciamo la legge di gravitazione universale possiamo dire che i corpi 

cadono per effetto della forza di gravitazione che si esercita tra il corpo e la 

Terra. Allora: 

𝑔 =
𝐺𝑀

𝑑2
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Se il corpo si trova sulla Terra 

o prossimo alla superficie, 

sostituendo a questa formula i 

valori relativi alla massa della 

Terra e al suo raggio troviamo 

per l’accelerazione il valore 

noto di 9.8 m/s2. 

 

Un altro fattore che influisce 

sul valore di g è la rotazione 

terrestre in quanto ogni corpo 

su di essa è soggetto ad una 

forza centripeta per cui:  

 

 

𝑔’ =  𝑔 − 𝜔2 𝑅𝑇 

All’Equatore 

 

 

 

 

 

 

 

 

  

“Rationem vero harum  

Gravitatis proprietatum  

ex phænomenis nondum  

potui deducere, &  

hypotheses non fingo.” 
 

“In verità non sono riuscito a dedurre la causa di 

queste proprietà della gravità dai fenomeni, e non 

avanzo ipotesi.”  

Isaac Newton, Philosophiae Naturalis Principia 

Mathematica, liber tertius 
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Una precisazione sulla Terza legge di Keplero generalizzata… 

Forza centrifuga o centripeta? 
 

TUTTO DIPENDE DAL SISTEMA DI RIFERIMENTO SCELTO! 

 

Nel calcolo dell’espressione della terza legge di Keplero generalizzata 

abbiamo uguagliato la legge di gravitazione universale alla forza centrifuga 

perché ci siamo posti in un sistema di riferimento non inerziale, che ruota 

assieme al pianeta. 

Il pianeta ruota, quindi ha un’accelerazione non nulla: il nostro sistema è 

accelerato rispetto ad un altro che ha origine nel centro del Sole. In un sistema 

non inerziale agiscono forze apparenti. Nel sistema di riferimento da noi 

scelto, la forza apparente che tiene il pianeta su un’orbita circolare è quella 

centrifuga, che è una forza fittizia uguale ed opposta a quella centripeta che 

lo manterrebbe nella sua orbita se fosse osservato da un punto fisso dello 

spazio.  

 

Esempio: 

Consideriamo un'auto che prende una curva, vista da un osservatore sulla 

strada, che è sistema inerziale.  L'auto non slitta: è mantenuta sulla sua 

traiettoria dalla forza di attrito statico tra il suolo e le ruote, che ha il ruolo di 

forza centripeta. L’auto è accelerata: il passeggero si trova dentro un sistema 

non inerziale, quindi sentirà l'effetto di una pseudoforza, cioè la forza 

centrifuga che è diretta in verso opposto alla forza centripeta menzionata in 

precedenza. Infatti, quando la nostra auto prende una curva ci sentiamo spinti 

verso l’esterno, nonostante non ci sia nessuno che materialmente ci spinge! 

L’osservatore esterno dirà:  

 

I passeggeri, per il principio 

d’inerzia, tendono a mantenere 

inalterata la propria velocità, 

opponendo una certa 

“resistenza” o inerzia ad 

assecondare la curva 
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Può dire così perché nel suo sistema di riferimento i 

passeggeri hanno una velocità non nulla, quella dell'auto 

che li trasporta! 

 

Il passeggero dirà: 

 

 

 

 

 

 

 

 

 

 

È la pseudoforza! 

 

Si perviene all’espressione della terza legge di Keplero generalizzata 

utilizzando l’una o l’altra forza. 

 

 

 

 

 

  

Prima ero fermo rispetto alla 

mia macchina, ora sto 

cominciando a muovermi 

verso l'esterno, quindi sto 

accelerando… in effetti sento 

qualcosa che mi spinge verso 

l’esterno da un lato, sento 

l'effetto di una forza, anche se 

nessuno mi sta spingendo! 
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Limite di Roche 
Il limite di Roche è la distanza minima dal centro di un corpo celeste al di 

sotto della quale un secondo corpo celeste minore che vi orbita intorno si 

frammenta a causa delle forze di marea. 

 
 

Quando un pianeta nelle fasi appena successive alla sua formazione è avvolto 

da un disco di frammenti, la materia oltre il limite di Roche può aggregarsi 

formando uno o più satelliti, mentre all’interno di tale limite le forze di marea 

impediscono la formazione di satelliti sufficientemente grossi. Questo si è 

verificato nel Sistema solare nei 4 pianeti che presentano gli anelli (Giove, 

Saturno, Urano e Nettuno). Per ciascuno di essi, gli anelli si trovano 

internamente al valore del limite di Roche calcolato per ogni pianeta.  

 

 

 

 

 

 

 

 

Per quanto riguarda Saturno, fu Edouard 

Albert Roche, studiando i suoi anelli, a 

verificare che il limite di Roche si 

posizionava appena al di fuori dell’anello 

più esterno. Come ulteriore conferma, le 

sonde Voyager mostrarono che gli anelli 

non sono corpi compatti, ma composti da 

cristalli di ghiaccio. 
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Immaginiamo una cometa costituita da due sfere di raggio r e massa m. Basta 

pensare a due palle di neve sporche, ognuna di raggio r, tenute insieme dalla 

forza di gravitazione universale che ognuna esercita sull’altra. Questa forza è 

data dalla relazione di Newton: 

𝐹𝑎𝑡𝑡 =
𝐺𝑚𝑚

𝑑2
=
𝐺𝑚2

(2𝑟)2
=
𝐺𝑚2

4𝑟2
 

Consideriamo adesso che la cometa si trovi ad una distanza x da un pianeta di 

massa m e raggio r. La forza di attrazione gravitazionale F, tra il pianeta e la 

palla di neve più vicina, sarà più grande della forza F’ che il pianeta esercita 

sulla palla più lontana. Quindi: 

𝐹 =
𝐺𝑀𝑚

𝑥2
 

 

𝐹′ =
𝐺𝑀𝑚

(𝑥 + 2𝑟)2
 

 

Le due palle risentiranno di una forza risultante (𝐹𝑚𝑎𝑟) che tende a separarle. 

Questa forza equivale alla differenza F’ – F. Si ha dunque: 
 

𝐹𝑚𝑎𝑟 = 𝐹 − 𝐹
′ 

𝐹𝑚𝑎𝑟 =
𝐺𝑀𝑚

𝑥2
−

𝐺𝑀𝑚

(𝑥 + 2𝑟)2
 

Poiché >> 𝑟 : 

𝐹𝑚𝑎𝑟 = −
4𝐺𝑀𝑚𝑟

𝑥3
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Le due masse si separeranno se la forza 𝐹𝑚𝑎𝑟 è superiore alla forza 𝐹𝑎𝑡𝑡: 

𝐹𝑚𝑎𝑟 > 𝐹𝑎𝑡𝑡 

−
4𝐺𝑀𝑚𝑟

𝑥3
>
𝐺𝑚2

4𝑟2
 

Cambiamo di segno: 

4𝑀𝑟

𝑥3
<
𝑚

4𝑟2
 

𝑀

𝑥3
<

𝑚

16𝑟3
 

Ponendoci al “limite”: 

𝑀

𝑥3
=

𝑚

16𝑟3
 

𝑥3 =
16𝑟3𝑀

𝑚
 

𝑥 = √16𝑟3
𝑀

𝑚

3

 

Estraendo dalla radice7: 

𝑥 = 2.44 𝑟√
𝑀

𝑚

3

 

 

Questa è la formula nota come Limite di Roche.  

 

 
7 Non vi preoccupate: 2.44 non è la radice cubica di 16! Il calcolo del limite di Roche 
è compresso e il suo risultato non può essere rappresentato in una formula algebrica 
esatta. Lo stesso Roche ha derivato la sua soluzione in modo approssimato, 
inserendo il coefficiente 2.44 perché teneva meglio conto dell’oblazione del primario 
e della massa del satellite.  
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Ricordiamo che: 

r = raggio del corpo minore (nel nostro caso, la cometa) 

M= massa del pianeta 

M=massa del corpo minore 

 

 

Ora, esprimendo le masse in funzione del volume e della densità: 

𝑀 = 𝑉𝜌 =
4

3
𝜋𝑅3𝜌 

𝑚 = 𝑉𝑐𝜌𝑐 =
4

3
𝜋𝑟3𝜌𝑐 

 

La formula diventa: 

𝑥 = 2.44 𝑟 √

4
3
𝜋𝑅3𝜌

4
3𝜋𝑟

3𝜌𝑐

3

 

𝑥 = 2.44 𝑟√
𝑅3𝜌

𝑟3𝜌𝑐

3

 

𝑥 = 2.44 𝑟
𝑅

𝑟
 √
𝜌

𝜌𝑐

3

 

 

𝑥 = 2.44 𝑅 √
𝜌

𝜌𝑐

3
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Dove: 

R = raggio del pianeta 

𝜌= densità del pianeta 

𝜌𝑐= densità del corpo minore (nel nostro caso, della cometa) 

 

 

 

 

ATTENZIONE!! 

La formula si applica solo su corpi 

“incoerenti”, cioè non compattati. 

Infatti nella formula consideriamo 

solo la forza mareale e 

gravitazionale, non considerando le 

forze di coesione della materia… 
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Sfera di Hill 
 

La sfera di Hill (il cui raggio è detto raggio di Hill) indica le dimensioni 

della sfera di influenza gravitazionale di un corpo celeste rispetto alle 

perturbazioni di un altro corpo, di massa maggiore, attorno al quale esso 

orbita. È stata definita dall'astronomo americano George William Hill 

(1838- 1914), sulla base del lavoro dell'astronomo francese Édouard Roche 

(1820-1883). Per questa ragione è anche conosciuta come la Sfera di Roche. 

Considerando un corpo centrale attorno al quale orbita un secondo corpo, 

la sfera di Hill è determinata dalle seguenti forze: 
 

• Gravità dovuta al corpo centrale; 

• Gravità dovuta al corpo secondario; 

• Forza centrifuga misurata in un sistema di riferimento avente 

origine sul corpo centrale e ruotante con la stessa velocità angolare 

del secondo corpo. 

 

La sfera di Hill è la più grande sfera, centrata sul secondo corpo, al cui 

interno la somma delle tre forze è sempre orientata verso il secondo corpo. 

Un terzo corpo più piccolo può orbitare intorno al secondo all'interno della 

sfera di Hill, con questa forza risultante come forza centripeta. 
 

La sfera di Hill si estende fra i punti di Lagrange L1 e L28, che si trovano 

sulla linea che congiunge i centri dei due corpi. La regione di influenza del 

secondo corpo è più piccola lungo quella direzione e funge da fattore di 

limitazione per la dimensione della sfera di Hill. Oltre quella distanza, un 

terzo oggetto in orbita intorno al secondo spenderebbe almeno parte della 

relativa orbita oltre la sfera di Hill e verrebbe progressivamente perturbato 

 
8 Nel problema dei tre corpi, i punti di Lagrange, tecnicamente chiamati punti di 
oscillazione, sono quei punti dello spazio in cui due corpi dotati di grande massa, 
tramite l’interazione della rispettiva forza gravitazionale, consentono ad un terzo 
corpo dotato di massa molto inferiore di mantenere una posizione stabile 
relativamente ad essi. In un sistema planetario comporta che un piccolo oggetto 
(satellite o asteroide), il quale condivide la stessa orbita di un pianeta e posizionato 
in un punto di Lagrange, manterrà costanti le distanze fra i corpi celesti maggiori 
(stella e pianeta). Perché ciò accada, la risultante delle accelerazioni gravitazionali 
impresse dai corpi celesti all’oggetto deve essere esattamente l’accelerazione 
centripeta necessaria a mantenere in orbita l’oggetto a quella particolare distanza 
(dal corpo celeste più grande), con la stessa velocità angolare del pianeta più piccolo. 
Questi punti sono detti di Lagrange in onore del matematico Joseph-Louis de 
Lagrange che nel 1772 ne calcolò la posizione. 
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dalle forze di marea del corpo centrale, finendo per orbitare attorno a 

quest'ultimo. 

 

ATTENZIONE: 
 

Non confondere la Sfera di Roche (per semplicità e per non creare confusione 

ci riferiremo a essa con il nome di Sfera di Hill) con il Limite di Roche 

descritto in questo Bignamino! 
 

 

Formule 

Se un corpo minore di massa m, orbita attorno ad uno maggiore di 

massa M con un semiasse maggiore a e una eccentricità di e, allora il 

raggio r della sfera di Hill del corpo minore è: 

 

𝑟 ≈ 𝑎(1 − 𝑒) ∗ √
𝑚

3𝑀

3
 

 

Se l’eccentricità è trascurabile: 
 

𝑟 ≈ 𝑎 ∗ √
𝑚

3𝑀

3
 

 

 

Piccola esercitazione: Quale periodo massimo può avere un ipotetico 

satellite stabile della Terra? [Suggerimento: il raggio della Sfera di Hill è 

il raggio orbitale massimo che può avere un satellite stabile, quindi…] 

 

 

È doveroso sottolineare come la sfera di Hill rappresenti solamente 

un’approssimazione della effettiva regione di stabilità orbitale e altre forze 

(per es. la pressione di radiazione) possono perturbare l’orbita dell’oggetto. 

Inoltre il terzo oggetto deve avere una massa trascurabile rispetto agli altri 

due, in maniera da non influenzare il sistema con la propria gravità. 
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Considerazioni sulle orbite (coniche) 
 

La Legge della Gravitazione Universale ci insegna che la forza d’attrazione 

gravitazionale è inversamente proporzionale al quadrato della distanza delle 

due masse che si attraggono, ovvero 𝐹 ∝
1

𝑑2
 ; a causa di questa caratteristica 

dell’interazione gravitazionale si può dimostrare che le orbite descritte dai 

corpi celesti attorno a un oggetto “attrattore” seguono particolari curve, le 

coniche. Le coniche sono curve che si ottengono dall’intersezione di un piano 

con un cono a due falde. Si ottengono così circonferenza, ellisse, iperbole e 

parabola. 

  

 
 

 

 

 

 

 

Ciò che distingue l’una dall’altra queste curve è un parametro, l’eccentricità: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circonferenza: il piano è perpendicolare all’asse (tratteggiato); 

Ellisse: il piano è obliquo; 

Parabola: il piano è parallelo a una delle generatrici (le due rette 

incidenti in V in figura); 

Iperbole: il piano è parallelo all’asse del cono.  

 

CIRCONFERENZA: 𝑒 = 0 

ELLISSE: 0 < 𝑒 < 1 (più 

questo valore si avvicina ad 1 

più l’ellisse è schiacciata) 

PARABOLA: 𝑒 = 1 

IPERBOLE: 𝑒 > 1 (quanto 

più maggiore di uno è questo 

valore tanto più l’iperbole è 

“aperta”) 
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Velocità orbitale 
 

Affinché il corpo rimanga in orbita è necessario che in ogni punto dell’orbita 

la forza centripeta sia uguale alla forza di attrazione gravitazionale: 

 

FC = FG 

m
v2

R
=
GmM

R2
 

m
v2

R
=
GmM

R2
 

v2 =
GM

R
 

𝐯 = √
𝐆𝐌

𝐑
 

 

 A questa velocità si dà il nome di prima velocità cosmica, valida per orbite 

circolari. 

 

 

 

E SE L’ORBITA NON È CIRCOLARE? 
 

Il problema si risolve con l’applicazione del principio di conservazione 

dell’energia meccanica che altro non è che la somma dell’energia cinetica e 

dell’energia potenziale. 

 

𝑲𝟏 +𝑼𝟏 = 𝑲𝟐 +𝑼𝟐 

 

E poiché le velocità orbitali variano al variare dalla distanza alla prima 

equazione è necessario associare la seconda legge di Keplero. 

 

Per cui il problema è risolto dalla soluzione del sistema:  

 

{
𝑲𝟏 +𝑼𝟏 = 𝑲𝟐 +𝑼𝟐
𝒗𝒂 𝒅𝒂 = 𝒗𝒑𝒅𝒑

 

 

 

 



Bignamino di Astronomia 

   95 

 

Nel caso della forza gravitazionale, l’energia potenziale è 𝑈 = −
𝑚𝑀𝐺

𝑅
 

L’energia cinetica è K= 
1

2
𝑚𝑣2 

 

 

Il sistema diventa: 

 

{

𝑣𝑎𝑑𝑎 = 𝑣𝑝𝑑𝑝
1

2
𝑚𝑣𝑎

2 −
𝐺𝑚𝑀

𝑑𝑎
=
1

2
𝑚𝑣𝑝

2 −
𝐺𝑚𝑀

𝑑𝑝

 

 

 

Le soluzioni sono:  

𝒗𝒂 = √𝟐𝑮𝑴
𝒅𝒑

𝒅𝒂(𝒅𝒑 + 𝒅𝒂)
 

 

 

𝒗𝒑 = √𝟐𝑮𝑴
𝒅𝒂

𝒅𝒑(𝒅𝒑 + 𝒅𝒂)
 

 

Ricordando che:  𝑑𝑎 = 𝑎(1 + 𝑒) ;    𝑑𝑝 = 𝑎(1 − 𝑒); 𝒂 =
𝒅𝒂+𝒅𝒑

𝟐
 ;  𝒆 =

𝒅𝒂−𝒅𝒑

𝒅𝒂+𝒅𝒑
 

 

Le due velocità possono anche essere espresse in funzione del semiasse 

maggiore e dell’eccentricità dell’orbita. 

 

Quindi :                         

𝑣𝑝   =  √
𝑮𝑴

𝒂
(
𝟏 + 𝒆

𝟏 − 𝒆
) 

 

𝑣𝑎   =  √
𝑮𝑴

𝒂
(
𝟏−𝒆

𝟏+𝒆
)      
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Considerazioni sulle orbite (dinamica) 
 

All’inizio di questi appunti abbiamo evidenziato come gli oggetti orbitanti 

seguano delle traiettorie che sono curve coniche e abbiamo individuato 

quest’ultime, catalogandole anche a seconda dell’eccentricità; in seguito 

abbiamo enunciato il principio di conservazione dell’energia meccanica: 

 

𝑲+𝑼 = 𝒄𝒐𝒔𝒕𝒂𝒏𝒕𝒆 

 

Possiamo procedere nella classificazione delle orbite a seconda del valore 

assunto da questa costante (l’energia meccanica). In particolare: 

• Se questa costante è negativa, allora l’oggetto segue un’orbita chiusa 

(circonferenza, ellisse); 

• Se essa è nulla, allora il corpo si muove su un’orbita parabolica (a 

distanza infinita la sua velocità è nulla); 

• Se essa è positiva, allora la traiettoria è iperbolica (e il corpo giunge 

a distanza infinita con velocità – chiamata “velocità d’eccesso 

iperbolico” – non nulla). 

 

 

 

 

 

Velocità di fuga 
 

  𝒗 =  √
𝟐𝑮𝑴

𝑹
 

 

A questa velocità si dà il nome di seconda velocità cosmica o velocità di fuga. 
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Raggio di Schwarzschild 
 

Immaginiamo ora di poter comprimere un corpo celeste di massa M (quindi 

via via il raggio R diminuisce): la velocità di fuga di un altro corpo dalla sua 

superficie aumenterà al diminuire del raggio. Quando il raggio raggiungerà 

un valore “critico”, la velocità di fuga eguaglierà quella della luce, e neanche 

la luce potrà allontanarsi indefinitamente dal corpo: esso è diventato un buco 

nero.  

 

Al raggio “critico” associato a ogni massa M si dà il nome di Raggio di 

Schwarzschild, in onore del matematico, astronomo e astrofisico tedesco Karl 

Schwarzschild (1873-1916); il raggio si ricava così: 

 

𝑐 =  √
2𝐺𝑀

𝑅𝑠
       →        𝑐2 =

2𝐺𝑀

𝑅𝑠
       →        𝑹𝒔 =

𝟐𝑮𝑴

𝒄𝟐
  

 

Dove 𝑐 è la velocità della luce (c = 299792458 m/s). 
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Eclissi 
 

Eclissi di Luna 
Una eclisse di Luna si verifica quando la Terra si interpone tra il nostro 

satellite ed il Sole, cioè quando la Luna entra nel cono d’ombra della Terra 

che è rivolto dalla parte opposta al Sole e pertanto l’eclisse può avvenire solo 

quando la Luna è in opposizione, cioè quando è piena. Poiché la Luna si sposta 

da ovest verso est 

essa entra nel cono 

d’ombra della Terra 

oscurandosi dalla 

parte lunare sinistra. 

Se   l’orbita della 

Luna attorno alla 

Terra giacesse sullo 

stesso piano 

dell’orbita della 

Terra attorno al Sole ad ogni plenilunio avremmo una eclisse totale di Luna. 

Queste due orbite sono inclinate di 5° 9’ e si incontrano i due punti che 

definiscono i nodi. Perché si abbia una eclisse, Sole e Luna non solo devono 

essere all’opposizione ma devono essere vicinissimi ai nodi. In media la 

distanza angolare del Sole dal nodo deve essere minore di 9°.9 per un’eclisse 

parziale e non più di 4°.6 per un’eclisse totale. 

 

CALCOLO della LUNGHEZZA del CONO D’OMBRA 

DELLA TERRA 

 

I triangoli VAS e VBT sono simili (vedi figura) 

𝑉𝑆 ∶  𝑉𝑇 =  𝐴𝑆 ∶  𝐵𝑇 

https://www.google.com/url?sa=i&url=https://www.tes.com/lessons/dmdX7N2sto28RQ/moti-terra-video-e-la-luna&psig=AOvVaw1XeYDMy6nsTE-nyeKbzfUF&ust=1581007163795000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKjBmersuucCFQAAAAAdAAAAABAD
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Ma:  

𝑉𝑆 =  𝑉𝑇 +  𝑇𝑆 

Sostituendo si trova che:   

𝑉𝑇 =
𝑇𝑆 ∙ 𝐵𝑇

𝐴𝑆 − 𝐵𝑇 
 

 

Siccome sappiamo che il raggio del Sole è circa 109.25 raggi terrestri 

abbiamo: 

𝑉𝑇 = 
𝑆𝑇 ∙ 𝐵𝑇

109.25𝐵𝑇 − 𝐵𝑇 
 

 

𝑉𝑇 = 
𝑆𝑇

109.25 − 1 
 

La lunghezza del cono d’ombra si può calcolare dividendo la distanza media 

Terra-Sole per 109.25 

 

Si può calcolare anche il semidiametro apparente visto dalla Terra dell’ombra 

che la Terra proietta sul piano dove si trova la Luna. 

 

Poiché il raggio angolare della Luna è di 15’.5, perché una eclisse di Luna 

possa avere luogo è necessario che la distanza tra i centri dell’ombra terrestre 

e della Luna sia inferiore a: 

41’ + 15’. 5 =  56’. 5 
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Con questo dato si può calcolare quanto è spostato il centro dell’orbita 

terrestre dal nodo lunare. 

Dalla proporzione: 

𝐵𝑇:𝑅𝐻 = 𝑉𝑇:𝐻𝑉 

𝑅𝐻 =
𝑉𝐻 ∙ 𝐵𝑇

𝑉𝑇
 

Dato che: 

𝑉𝐻 = 𝑉𝑇 − 𝑇𝐻 

𝑅𝐻 =
𝐵𝑇 (𝑉𝑇 − 𝑇𝐻)

𝑉𝑇
= 

=
𝐵𝑇

𝑉𝑇
(1 −

𝑇𝐻

𝑉𝑇
) = 

Dalla formula precedente: 

𝑉𝑇 =
𝑆𝑇

108.25
 

Sostituendo: 

𝑅𝐻 =
𝐵𝑇 ∙ 108.25

𝑆𝑇
(1 − 𝑇𝐻) = 

= 
𝑅𝑇𝐸𝑅𝑅𝐴
𝐷𝑇𝑆

108.25 (1 − 𝐷𝑇𝐿) 

Si trova che questo valore è di 10°.6. Quindi un’eclisse lunare si può verificare 

(anche di breve durata) solo nel caso in cui l’orbita terrestre è spostata meno 

di 10°.6 dal nodo lunare (ad est o ad ovest). La Terra si muove lungo l’eclittica 

di circa 59’ al giorno. Per percorrere questa distanza impiega 10.8 giorni e la 

distanza doppia in 21.6 giorni, poiché una rivoluzione sinodica si compie in 

29.5 giorni. Una Luna piena può verificarsi ad una distanza superiore ai 10°.6 

ad ovest e la successiva Luna piena ad una distanza superiore ad est e quindi 

nel corso di questa rivoluzione non si verificheranno eclissi. Si può verificare 

che in un anno non ci siano eclissi, mentre al massimo in un anno se ne 

potrebbero verificare tre: la prima cadrebbe poco dopo il primo gennaio, la 

seconda sei mesi dopo (in prossimità di giugno) e la terza a fine dicembre 

(dodici mesi sinodici dopo la prima, 354 giorni). 
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Eclissi di Sole 
 

Un'eclissi di Sole si verifica quando la Luna, attorno alla sua congiunzione, si 

trova allineata tra la Terra e il Sole, molto vicino ad uno dei nodi o 

esattamente in esso. Benché di dimensioni estremamente diverse, i due corpi 

celesti si trovano a distanze tali da mostrare lo stesso diametro apparente, il 

che consente alla 

Luna di coprire il 

disco del Sole. 

Perché ci sia una 

eclisse di Sole è 

necessario che al 

momento del 

novilunio il Sole 

sia distante dal 

nodo inferiore al massimo 15°.5.  Questo valore è più alto di quello calcolato 

per l’eclisse di Luna, e quindi si capisce perché le eclissi di Sole sono più 

frequenti. Il cono d’ombra massimo della Luna ha un valore che non supera i 

270 km sulla superficie della Terra, mentre la lunghezza del cono d’ombra è 

circa 374.000 km per cui il vertice di questo cono non sempre raggiunge la 

Terra: in questo caso si hanno eclissi anulari. In località differenti della Terra, 

l’eclisse di Sole si verifica in tempi diversi. Il moto della Luna attorno alla 

Terra e la rotazione della Terra attorno al proprio asse fanno sì che l’ombra 

lunare si sposti da ovest verso est formando una striscia d’ombra lunga un 

migliaio di km e larga da 200 a 270 km. Poiché la Luna si sposta da ovest 

verso est l’eclisse inizia dal bordo ovest del Sole. 
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CONDIZIONE perché si possa verificare un’eclissi di 

Sole 

 

Perché si verifichi un’eclisse di Sole è necessario che nel periodo della Luna 

nuova questa si trovi in prossimità di uno dei nodi della sua orbita, cioè in 

vicinanza dell’eclittica. Indichiamo con S, T, L, i centri del Sole, della Terra, 

della Luna, che giacciono tutti su di un piano perpendicolare al piano 

dell’eclittica. Il verificarsi dell’eclisse dipende dalla latitudine geocentrica 

della Luna (nella figura l’angolo LTS (vertice in T)  =  𝛽 ) 

Dalla figura:   

𝛽 =  𝐿𝑇𝐿’ +  𝐿’𝑇𝑆’ +  𝑆𝑇𝑆’ 

Dalla figura si evince che: 

𝐿𝑇𝐿’ è il raggio angolare della Luna=  𝛼𝐿  

𝑆𝑇𝑆’ è il raggio angolare del Sole = 𝛼𝑆  

𝛽 =  𝛼𝐿   + L’TS’ + 𝛼𝑆 

𝑳’ 𝑻𝑺’ = ? 

Consideriamo l’angolo 𝑇𝐿’𝑂 esterno al triangolo 𝑇𝐿’𝑆’ : 

𝑇𝐿’𝑂 =  𝐿’𝑇𝑆’ +  𝑇𝑆’𝐿’ 

𝑇𝐿’𝑂 =  𝐿’𝑇𝑆’ +  𝑇𝑆’𝑂 

𝐿’𝑇𝑆’ =  𝑇𝐿’𝑂 −  𝑇𝑆’𝑂 

𝑇𝐿’𝑂 = 𝑝𝐿   = 57
′ 2′′ (parallasse orizzontale della Luna)  

𝑇𝑆’𝑂=  𝑝𝑆 = 8
′′. 8  (parallasse orizzontale del Sole) 
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𝛽 =   𝛼𝐿     + 𝛼𝑆   +   𝑝𝐿  −  𝑝𝑆 

𝛽 =  15’. 5 + 16’. 3 + 57’. 2 −  8’’. 8 

𝛽 =  88’. 46 

Perché si verifichi una eclisse anche di breve durata è necessario che la 

latitudine geocentrica della Luna sia inferiore a 88’.46. 

 

La parallasse orizzontale equatoriale della Luna è l’angolo sotto il quale, 

dal centro della Luna, è visibile il raggio equatoriale della Terra. La 

parallasse orizzontale equatoriale del Sole è l’angolo sotto il quale, dal 

centro del Sole, è visibile il raggio equatoriale della Terra. 

 

La distanza angolare del 

centro della Luna rispetto al 

nodo (longitudine) si può 

calcolare con la: 

 

sinΔ𝜆 = 
tan𝛽

tan 𝑖
 

 

Δ𝜆 = 16°.5 

 

Il Sole, muovendosi alla 

velocità di 59’ al giorno, 

percorre 33° di eclittica in 34 giorni. Essendo il periodo sinodico di 29.5 

giorni, è evidente che nel corso di questo periodo si ha una Luna nuova (o 

anche due). Questo assicura che nel corso di un anno si verifichino, almeno, 

due eclissi di Sole in vicinanza dei nodi. Se la prima si verifica ai primi di 

gennaio, la seconda si ha alla Luna nuova successiva, così una eventuale terza 

e quarta eclisse si verificherebbero poco meno di sei mesi dopo e la quinta 

354 giorni dopo la prima. 
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Ciclo di Saros 
 

In base a quanto fin qui detto, il numero massimo di eclissi che si possono 

verificare in un anno è 7: 

• 2 Luna + 5 Sole 

• 3 Luna + 4 Sole 

e viceversa. Questa combinazione è piuttosto rara, l’evento più frequente è 2 

Luna + 2 Sole. Il numero minimo è costituito da due eclissi (entrambe di Sole). 

Fin dall’antichità era noto che le eclissi si succedevano pressoché nello stesso 

ordine in un periodo di circa 18 anni e 11.3 giorni. La spiegazione è alquanto 

semplice. 

Le fasi lunari si succedono ogni 29.53 giorni (mese sinodico) mentre il ritorno 

allo stesso nodo della 

Luna avviene ogni 

27.21 giorni.  I nodi 

hanno un moto di 

retrogradazione: in un 

giorno percorrono un 

angolo pari a 

3’10’’.64 e 

completano il giro in 

18 anni e 11.3 giorni. 

Il Sole si sposta di moto diretto in media di 59’8’’.33 al giorno   rispetto al 

nodo. Il moto del Sole è dunque di 62’19’’ e quindi l’intervallo di tempo fra 

due passaggi consecutivi del centro del Sole per lo stesso nodo è di 346.62 

giorni (anno draconico). Il Saros è l’intervallo di tempo perché questi tre 

periodi tornino nella stessa successione. La natura si diverte!!!! 

Succede che: 

• 223 lunazioni (223 mesi sinodici) corrispondono a giorni 6585.19 

(223 ∗  29.53) 

• 242 mesi draconici corrispondono a giorni 6585.02   

• Quest’intervallo di tempo corrisponde a 18 anni e circa 11 giorni   
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Se dividiamo questi 6585.19 giorni per l’anno draconico otteniamo un valore 

di circa 19. 

Dunque, come mostrato, questi tre periodi ritornano nella stessa successione 

dopo circa 6585 giorni, cioè un ciclo di Saros. Le condizioni in cui si 

producono le eclissi non saranno mai le stesse poiché, essendo 223 mesi 

sinodici più corti di 0.04 mesi draconici, dopo 18 anni la Luna non si troverà 

esattamente allo stesso posto rispetto al nodo. Il ciclo di Saros contiene 6585 

giorni interi più circa 1/3 di giorno: questo comporta che le zone di visibilità 

delle eclissi sulla superficie terreste in 18 anni si spostano di circa 120° verso 

Ovest. 
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Esopianeti 
 

Un pianeta extrasolare o esopianeta è un pianeta non appartenente al sistema 

solare, orbitante cioè attorno a una stella diversa dal Sole. La scoperta degli 

esopianeti è resa possibile da metodi di osservazione indiretta e da 

osservazioni al telescopio. I pianeti, in confronto alle stelle, emettono molta 

meno luce nell’universo: per tale motivo, l’individuazione diretta dei pianeti 

extrasolari risulta estremamente difficile (in condizioni normali di visibilità, i 

pianeti hanno solitamente una luminosità pari a circa un milione di volte meno 

di quella di una stella). In aggiunta a questa intrinseca difficoltà di rilevazione, 

la maggiore luminosità delle stelle, attorno alle quali orbitano i pianeti, causa 

un bagliore che tende a coprire la luce debolmente riflessa dai corpi celesti 

del rispettivo sistema. Al 2008, sono stati determinati 6 metodi di 

osservazione indiretta dei pianeti extrasolari: 

• Astrometria: consiste nella misurazione precisa della posizione di 

una stella nel cielo e nell’osservare in che modo questa posizione 

cambia nell’arco del tempo. Se la stella ha un pianeta, allora 

l’influenza gravitazionale del pianeta stesso causerà alla stella un 

leggero movimento circolare o un’orbita ellittica attorno a un comune 

centro di massa. Questo movimento è rivelato attraverso misure di 

effetto Doppler. 

• Velocità radiali: questo metodo è conosciuto anche col nome di 

metodo Doppler. Le variazioni nelle velocità con cui la stella si 

allontana dalla Terra possono far dedurre la presenza di un pianeta, a 

causa di “sbilanciamenti” delle linee spettrali della stella. 

• Variazioni degli intervalli di emissioni di una Pulsar: una pulsar 

(il residuo densissimo di una stella che è esplosa in supernova), 

ruotando, emette onde radio a intervalli estremamente regolari. 

Leggere anomalie negli intervalli delle emissioni possono essere 

usate per tracciare cambiamenti nel moto della pulsar, causati dalla 

presenza di pianeti 

• Metodo del transito: se un pianeta transita di fronte alla propria 

stella, allora è osservabile una diminuzione della luminosità della 

stella eclissata. L’ammontare della variazione dipende dalla 

dimensione del pianeta e della stella stessa. I pianeti extrasolari si 

distinguono dalle stelle variabili a eclisse dal fatto che nella curva di 

luce dei primi c’è un’unica variazione, nelle seconde ve ne sono due. 
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• Variazione del tempo di transito: in sistemi dove è già stato 

scoperto un pianeta in transito, è possibile trovarne altri osservando 

eventuali variazioni del periodo orbitale del pianeta già noto a causa 

dell’attrazione gravitazionale di un altro pianeta non transitante.  

• Microlente gravitazionale: l’effetto della lente gravitazionale 

avviene quando i campi gravitazionali di due corpi celesti 

“cooperano” per focalizzare la luce di una stella lontana.  

 

 

Metodo dei transiti 
 

 

 

 

Nel momento in cui si verifica un transito si ha la seguente situazione: 
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Un vantaggio del metodo dei transiti è che le dimensioni del pianeta possono 

essere determinate dalla curva di luce della stella. Supponendo trascurabile la 

brillanza superficiale del pianeta (molto minore di quella della stella), è 

possibile mettere in relazione il rapporto dei flussi con quello delle aree 

irradianti: 

𝐹𝑡
𝐹𝑠
=
𝐴𝑠 − 𝐴𝑝
𝐴𝑆

 

Supponendo i corpi perfettamente sferici: 

𝐹𝑡
𝐹𝑠
= 1 −

𝜋𝑅𝑝
2

𝜋𝑅𝑆
2 

Semplificando: 

1 −
𝐹𝑡
𝐹𝑠
= (

𝑅𝑝

𝑅𝑆
)
2

  

𝐹𝑠 − 𝐹𝑡
𝐹𝑠

= (
𝑅𝑝
𝑅𝑆
)
2

 

∆𝐹

𝐹𝑠
= (

𝑅𝑝
𝑅𝑆
)
2

 

 

 

Analizzando le curve di luce (come 

quella riportata a fianco) è possibile 

notare che il “calo” di luminosità 

dipende soltanto dalla variazione di 

flusso che ci arriva sulla Terra (viene 

solitamente chiamata “profondità del 

transito”). Perciò, la “variazione di 

magnitudine” (se si scrive sotto forma 

di rapporto con una magnitudine di 

riferimento) segue lo stesso andamento 

che, come visto, dipende dai raggi dei 

due corpi. 
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Perciò: 

∆𝑚 ∝
∆𝐹

𝐹
∝ (

𝑅𝑝
𝑅𝑠
 )
2

 

Da questa formula è dunque possibile ottenere una buona stima del raggio del 

pianeta. 

 

Infatti, sostituendo nella formula di Pogson:  

𝑚𝑡 −𝑚𝑠 = −2.5 log (
𝐹𝑡
𝐹𝑠
) 

−∆𝑚 = −2.5 log (1 −
𝑅𝑝
2

𝑅𝑠 
2) 

Sapendo che log (1 −
𝑅𝑝
2

𝑅𝑠
2) =

ln(1−
𝑅𝑝
2

𝑅𝑠
2)

ln(10)
  (cambiamento di base), allora: 

−∆𝑚 = −2.5

ln (1 −
𝑅𝑝
2

𝑅𝑠
2)

ln(10)
 

ln(10) = ~2.30, perciò: 

−∆𝑚 = −2.5

ln (1 −
𝑅𝑝
2

𝑅𝑠
2)

2.30
 

Assumendo adesso un raggio del pianeta molto più piccolo di quello della 

stella e “semplificando” tra loro il 2.5 con il 2.3 (ricordiamoci che si tratta di 

un’approssimazione!!), otteniamo: 

∆𝑚 =
𝑅𝑃
2

𝑅𝑠
2
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STRUMENTI OTTICI 
 

 

Angolo solido 
 

Si definisce angolo solido la 

porzione di sfera intercettata dalle 

semirette che lo individuano. Esso si 

misura con la seguente relazione (vd. 

figura a lato per la notazione):  

𝛺 =
𝐴

𝑅2
 

L’angolo solido complessivo 

comprendente tutta la superficie 

sferica, sulla base della formula 

precedente, è uguale a: 

Ω𝑠 =
𝐴𝑠
𝑅2

=
4𝜋𝑅2

𝑅2
= 4𝜋 

 

L'angolo solido totale di una sfera è pertanto pari a 4π. L'unità di misura è sr 

(steradiante) ed è un numero puro. 

Per avere la misura in gradi quadrati si deve 

𝑚𝑜𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑟𝑒: 4𝜋 • (
180°

𝜋
)
2

             𝑜 𝑑𝑖𝑣𝑖𝑑𝑒𝑟𝑒:
4𝜋

𝜋□°2
  

 

4π sr = 41253 gradi quadrati   →   1 grado quadrato = 3.046 • 10−4 𝑠𝑟 
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Campo dello strumento 
 

Il campo di uno strumento è definito dall'angolo solido sotto il quale l'oculare 

viene visto dal centro dell'obiettivo. Il campo corretto dalle aberrazioni ottiche 

di norma è  
1

2
□° 

 

 

Apertura assoluta 
 

L'apertura assoluta dipende dal diametro D dello strumento. La quantità di 

luce raccolta è proporzionale all'area dell'obiettivo  ≅ 𝐷2 

 

 

Apertura relativa 
Si definisce apertura relativa il rapporto: 

𝐷

𝑓
=
𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎 𝑎𝑠𝑠𝑜𝑙𝑢𝑡𝑎 (𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜)

𝑓𝑜𝑐𝑎𝑙𝑒 𝑑𝑒𝑙𝑙′𝑜𝑏𝑖𝑒𝑡𝑡𝑖𝑣𝑜
 

 

 

Rapporto focale 
 

L'inverso dell’apertura relativa 
𝑓

𝐷
 definisce il rapporto focale.  

L'energia raccolta dall'obiettivo è distribuita sull'area dell'immagine la cui 

grandezza sul piano focale è data da:  

𝑑 = 𝑓 • 𝑡𝑎𝑛𝛼 

Con α=diametro angolare dell’oggetto: 

𝑑 = 𝑓𝛼 se α è espresso in radianti. 
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Potere risolutivo 
Il potere risolutivo è la minima distanza angolare tra due sorgenti di luce che 

possono essere viste separate (“risolte", in termine tecnico) secondo un 

criterio detto di Rayleigh. Due sorgenti puntiformi (di uguale luminosità) 

risultano risolte quando la loro distanza angolare 𝜃 è uguale a: 

𝜃(𝑟𝑎𝑑) =
1.22 •  𝜆

𝐷
=
1.22 ∗ 𝑙𝑢𝑛𝑔ℎ𝑒𝑧𝑧𝑎 𝑑′𝑜𝑛𝑑𝑎

𝑑𝑖𝑎𝑚𝑒𝑡𝑟𝑜 
 

Si ottiene un risultato in radianti. Se vogliamo ottenere 𝜃 in secondi d'arco, 

invece:  

𝜃(") =
2.5 • 105 •  𝜆

𝐷
 

Con λ=lunghezza d'onda della luce. Per l’occhio umano, si può assumere 𝜆 

pari a 5500Å (regione di massima sensibilità dell'occhio)9. Il potere risolutivo 

dell'occhio, assumendo la pupilla con un diametro di 3 mm, è uguale a:  

𝜃 =
1.22𝜆

𝐷
= 1.22 •

5500 • 10−9𝑚

3 • 10−3𝑚
= 2.24 • 10−4𝑟𝑎𝑑 = 46" 

Il fattore di conversione da radianti a secondi è il NUMERO MAGICO:  

1 𝑟𝑎𝑑 =  206265” 

Nella determinazione del potere risolutivo interviene l’apertura dello 

strumento e non l’ingrandimento. 

 

 

Ingrandimento 
 

L'ingrandimento dello strumento è dato dal rapporto tra la focale dell'obiettivo 

𝑓 e la focale dell'oculare 𝑓′:  

𝑔 =
𝑓

𝑓′
 

 
9 Questo potere risolutivo è quello teorico della lente o specchio obiettivo: tuttavia, 
nella pratica, la risoluzione è peggiorata dalle turbolenze atmosferiche e dipende dal 
seeing. 



 Bignamino di Astronomia 
 

 116  
  

 

Aberrazione della luce 
 

Quando i raggi di una stella arrivano sulla Terra, la loro 

direzione di provenienza appare leggermente deviata a causa 

della velocità orbitale del pianeta v. I vettori delle velocità 

(della luce e del pianeta) si combinano per dare un vettore 

risultante di poco inclinato dalla direzione di provenienza dei 

raggi.  

 

𝑎 = arctan
𝑣

𝑐
 

 

 

 

 

Rifrazione 
 

Il fenomeno della rifrazione ha origine 

dal cambiamento di velocità delle onde 

luminose quando passano da un mezzo 

trasparente all’altro. Esiste una 

proporzione tra le due diverse velocità e 

i seni degli angoli 𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑧𝑎 e 

𝜃𝑟𝑖𝑓𝑟𝑎𝑧𝑖𝑜𝑛𝑒 che i raggi formano con la 

linea normale alla superficie nel punto 

colpito dal raggio. Se consideriamo gli indici di rifrazione 𝑛1 e 𝑛2 dei 

materiali, la proporzione è inversa.  

𝑠𝑖𝑛𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑧𝑎
𝑠𝑖𝑛𝜃𝑟𝑖𝑓𝑟𝑎𝑧𝑖𝑜𝑛𝑒

=
𝑛2
𝑛1
=
𝑣1
𝑣2
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Rifrazione atmosferica 
 

All’entrata nell’atmosfera terrestre, i raggi 

luminosi provenienti da un corpo celeste che 

si trova a distanza zenitale z vengono rifratti 

(deviati verso il basso) di un angolo r. Quindi 

i corpi celesti si osservano in una posizione 

leggermente più alta del reale. In particolare, 

possiamo vedere oggetti che si trovano 

anche sotto l’orizzonte geometrico del luogo 

(es. Il sole al tramonto). Per distanze zenitali 

inferiori a 70°, il valore della rifrazione è 

direttamente proporzionale alla tangente della distanza zenitale stessa 

attraverso la seguente relazione: 

𝑟" = 58.2" tan (𝑧) 

Oltre questo valore, fino all’orizzonte, la rifrazione aumenta fino a 

raggiungere il valore massimo di 35’ 

 

 

Formula di Bennett e Saemundsson 
 

Bennett ha sviluppato una formula empirica semplice per calcolare la 

rifrazione partendo dall’altezza apparente. Se ℎ𝑎è l’altezza apparente in gradi, 

la rifrazione R in minuti d’arco è data da: 

𝑅 = 𝑐𝑜𝑡𝑔 (ℎ𝑎 +
7.31

ℎ𝑎 + 4.4
) 

La formula ha una precisione di 0.07’. Saemundsson ha sviluppato una 

formula per determinare la rifrazione partendo dall’altezza vera (mantenendo 

le stesse unità di misura della formula di Bennett): 

𝑅 = 1.02𝑐𝑜𝑡𝑔 (ℎ +
10.3

ℎ + 5.11
) 

La formula corrisponde a quella di Bennett a meno di 0.1’. 

  

Altezza Rifrazione 

0° 35’ 

5° 10’ 

10° 5’ 

20° 2.5’ 

45° 1’ 

60° 0.5’ 

90° 0’ 
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Depressione dell’orizzonte 
 

Oltre alla rifrazione, se l’osservatore è posto ad un’altezza h dalla superficie 

avrà un altro fattore che produrrà un’ulteriore “abbassamento dell’orizzonte”.  

 

𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑅

𝑅 + ℎ
) 

 

La “depressione dell’orizzonte” è quindi un effetto dovuto sia all’atmosfera 

terrestre che alla quota alla quale si trova l’osservatore: 

𝐷 = 𝑑 + 𝑖 

 

All’orizzonte, dove la rifrazione vale circa 35’: 

𝐷 = 35′ + 𝑖 
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Riassumendo… 
 

CENNI TEORICI SUI TELESCOPI 
Il telescopio è uno strumento che raccoglie la luce o altre radiazioni 

elettromagnetiche provenienti da un oggetto lontano, la concentra in un punto 

(detto fuoco) e ne produce un'immagine ingrandita. Possiamo paragonare un 

telescopio a un “grande occhio” che sopperisce al fatto che la nostra pupilla, 

di dimensioni ridotte, riesce a raccogliere un quantitativo insufficiente di luce 

emessa da un oggetto lontano. Un telescopio è caratterizzato dalle seguenti 

componenti e grandezze: 

• OBIETTIVO: è la parte del telescopio rivolta verso l’oggetto da 

osservare. Il suo diametro D prende il nome di APERTURA. 

Telescopi con una grande apertura sono capaci di raccogliere più luce 

e di fornire un’immagine a più alta risoluzione. L’obiettivo fa 

convergere i raggi luminosi in un punto, il fuoco, la cui distanza 

dall’obiettivo è chiamata LUNGHEZZA FOCALE.; 

• OCULARE: la parte del telescopio (nel caso di telescopi ottici) che 

raccoglie la luce proveniente dall’obiettivo e che la trasmette poi 

all’occhio. Anche per l’oculare è possibile definire una 

LUNGHEZZA FOCALE. 

 

 

Ingrandimento 
L’ingrandimento di un telescopio è dato dal rapporto fra la lunghezza focale 

dell’obiettivo e la lunghezza focale dell’oculare: 

𝑖 = 𝑓𝑜𝑏/𝑓𝑜𝑐 

 

 

Rapporto focale 
Rapporto esistente tra la lunghezza focale dell’obiettivo e l’apertura stessa del 

telescopio: 

𝐹 =
𝑓𝑜𝑏
𝐷

 

Negli strumenti è specificato da una F seguita da un numero (es.: F4, F4.5, 

F6…). 
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Campo visivo 
Esso è dato dal rapporto fra il campo visivo apparente dell’oculare 

(l’ampiezza angolare dell’immagine fornita dall’oculare soltanto) e il numero 

di ingrandimenti: 

𝐹𝑜𝑉 =
𝐹𝑜𝑉𝑜𝑐
𝑖

 

 

 

 

Pupilla d’uscita 

Essa è il diametro del fascio luminoso che esce dall’oculare: 

𝑝 =
𝐷

𝑖
 

 

 

 

Potere risolutivo 
Esso è l’angolo minimo che deve separare due oggetti affinché lo strumento 

li possa distinguere: è dato dal criterio di Rayleigh: 

𝜗(𝑟𝑎𝑑) =
1,22𝜆

𝐷
             

 

𝜗° =
69,9𝜆

𝐷
                 

 

𝜆 𝑙𝑢𝑛𝑔ℎ𝑒𝑧𝑧𝑎 𝑑′𝑜𝑛𝑑𝑎 𝑑𝑒𝑙𝑙𝑎 𝑙𝑢𝑐𝑒 𝑜𝑠𝑠𝑒𝑟𝑣𝑎𝑡𝑎  
 

 

 

 

Magnitudine limite 
È la magnitudine visuale massima che può essere osservata con uno strumento 

di apertura D (in cm): 

𝑚𝑙𝑖𝑚 = 6,8 + 5𝑙𝑜𝑔𝐷 
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Ingrandimento minimo utile 

è l’ingrandimento che fornisce una pupilla d’uscita pari al diametro della 

pupilla umana (6-7 mm): 

𝑖𝑚𝑖𝑛 = 𝐷(𝑚𝑚)/7 

 

 

 

Formula di Dawes 
Ci consente di trovare l’apertura minima di un telescopio atto a distinguere un 

oggetto che si vede sotto un angolo α: 

𝐷(𝑚𝑚) =
120

𝛼"
 

 

 

 

Dimensioni dell’immagine sul piano focale 
L’immagine che si forma sul piano focale di un telescopio con lunghezza 

focale dell’obiettivo f relativa a un oggetto di dimensione angolare α è: 

𝑙 = 2𝑓 tan (𝛼/2)  
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ASTROFISICA 
 

Tutte le informazioni che riceviamo dalle stelle ci provengono dalla “luce” 

che emettono1. È solo attraverso l’analisi e la “decodificazione” dei messaggi 

contenuti in questa radiazione elettromagnetica   che è la luce che noi 

possiamo ottenere informazioni sulle proprietà fisiche e chimiche delle stelle 

e delle galassie. 

 

Radiazione elettromagnetica 
 

Una radiazione elettromagnetica è, dal punto di vista dell’elettromagnetismo 

classico, un fenomeno ondulatorio dovuto alla contemporanea propagazione 

di perturbazioni periodiche di un campo elettrico e di un campo magnetico, 

oscillanti su piani tra di loro ortogonali. Le stelle emettono tipicamente 

radiazione di “corpo nero” e come tale irradiano energia in tutte le lunghezze 

d’onda secondo una distribuzione che viene chiamata spettro della radiazione 

elettromagnetica. 
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I parametri che permettono di distinguere tra loro le varie radiazioni 

elettromagnetiche sono: 

 

 

In realtà, un altro “canale” di trasmissione delle informazioni per la 

comprensione dei fenomeni celesti si è aperto grazie ai risultati 

positivi ottenuti dagli interferometri per onde gravitazionali LIGO e 

VIRGO; in particolare, gli interferometri menzionati, il 17 agosto 

2017, hanno rilevato un segnale di onda gravitazionale (rilevazione 

annunciata poi ufficialmente  il 16 ottobre dello stesso anno), mentre 

altri telescopi in orbita e a terra sono riusciti a individuare per la prima 

volta la sua controparte elettromagnetica;  l’evento che ha generato il 

segnale è stato la collisione di due stelle di neutroni (che ha portato a 

un’esplosione nota col termine di kilonova) nella galassia NGC 4993: 

esso ha segnato la nascita della cosiddetta “astronomia multi-

messaggero, per il fatto che è stato possibile confrontare due 

“linguaggi” diversi, permettendo così di ampliare le frontiere della 

conoscenza di questi fenomeni “estremi”. 

 

 

Parametri di un’onda 
 

Come tutti i fenomeni ondulatori la radiazione elettromagnetica è 

caratterizzata da questi parametri: 

 Lunghezza d’onda 𝝀:  

la distanza tra due creste o tra 

due ventri. Si misura in metri e/o 

con i suoi sottomultipli. 

 

 Periodo T:  

l’intervallo di tempo, misurato 

in secondi, in cui avviene 

un’oscillazione completa, 

ovvero l'intervallo di tempo 

impiegato dall'onda per ritornare 
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nella medesima posizione (per esempio, il tempo intercorso tra due 

creste o tra due ventri successivi. 

 

 Frequenza 𝝊: è il numero di creste che si susseguono nello stesso 

punto nell’unità di tempo; è l’inverso del periodo:     

𝜐 =
1

𝑇
 

Si misura in Hertz (Hz).  

1 𝐻𝑧 = 1 𝑠−1 = 1 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑧𝑖𝑜𝑛𝑒 𝑎𝑙 𝑠𝑒𝑐𝑜𝑛𝑑𝑜 

 Ampiezza A: rappresenta la variazione massima dell’onda. 

L’ampiezza di un’onda periodica è l’altezza di una sua cresta 

rispetto alla posizione di riposo. 

 

 Intensità di un’onda: è proporzionale al quadrato dell’ampiezza. 

 

  Potenza: ogni onda porta con sé un’energia e quindi una potenza. 

Tale potenza decresce con il quadrato della distanza dalla sorgente.  

La lunghezza d’onda λ e la frequenza ν di una radiazione elettromagnetica 

sono grandezze legate tra loro dalla relazione:  

𝜆 ∙ 𝜐 = 𝑐 

(c –la velocità della luce- nel vuoto ha un valore di 299 792 458 m/s.) Questa 

formula ci dice che le due grandezze sono inversamente proporzionali.  

La radiazione elettromagnetica può essere interpretata come un insieme di 

“pacchetti” di energia a cui si dà il nome di fotoni: grazie a questi “pacchetti 

energetici” la luce può interagire con la materia a livello microscopico: per 

esempio può eccitare un elettrone in un atomo cedendo a esso la sua energia. 

Continuando il paragone, possiamo immaginare che più la radiazione è 

intensa, più i pacchetti sono numerosi; più la radiazione cresce di frequenza, 

più essi sono “capienti”. Quest’ultima caratteristica è descritta dalla Legge di 

Planck, che lega l’energia del fotone alla sua frequenza: 

𝐸 = ℎ ∙ 𝜈  

(dove h è la costante di Planck)     

𝐸 = ℎ
𝑐

𝜆
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Equivalenza massa-energia 
 

Tra l’energia e la massa esiste una fondamentale relazione, scoperta dal fisico 

Albert Einstein, espressa dall’equazione 

𝐸 = 𝑚𝑐2 

dove c è la velocità della luce (pari a 3 · 108 m/s). L'equazione di Einstein 

implica che energia e massa sono equivalenti: la massa può essere trasformata 

in energia e l'energia può essere trasformata in massa. Ciò comporta il 

principio di conservazione della massa-energia: non vi è conservazione 

della massa o dell'energia considerate separatamente ma vi è conservazione 

dell'insieme delle due: a una diminuzione della massa pari a m deve 

corrispondere un aumento dell'energia pari a  m · c2. Poiché il prodotto m · 

c2 è un numero molto grande, la trasformazione di una massa anche molto 

piccola di materia determina la produzione di una quantità enorme di energia, 

come avviene, per esempio, nelle reazioni di fissione e di fusione nucleari 

(queste ultime avvengono nel nucleo delle stelle: si veda, per una maggiore 

comprensione, il problema “Carburante stellare” della sezione Miscellanea). 
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Grandezze fotometriche 
 

 

 

 

 

 

 

 

Flusso luminoso 
 Quantità di energia luminosa emessa da una determinata sorgente nell'unità 

di tempo. Lo indichiamo con la lettera Φ. L'unità di misura nel SI è 

il lumen (lm); 1 watt = 683 lumen. 

 

 

 

Immagine dal web (fonte: VOLTIMUM) 



Bignamino di Astronomia 

   127 

Illuminamento 
Rapporto tra il flusso luminoso ricevuto da una superficie e l'area della 

superficie stessa (E= 
𝜑

𝑆
 )  

L'unità di misura nel SI è il lux (lx), ovvero il lumen al metro quadrato 

(lm/𝑚2).  
 

Nota:  

Dalla definizione di illuminamento si ricavano due importanti corollari di 

natura geometrica che risultano molto utili per comprendere la distribuzione 

della luce nello spazio: 

1) Per una sorgente puntiforme la diminuzione del livello di 

illuminamento su di una superficie varia in relazione al quadrato della 

distanza dalla fonte: raddoppiando la distanza dalla fonte il livello di 

illuminamento sulla superficie diviene quindi ¼; 

2)  Il livello d’illuminamento su di una superficie è massimo quando i 

raggi luminosi giungono perpendicolari ad essa e diminuisce 

proporzionalmente al loro angolo d’incidenza secondo la relazione: 

𝐸 =  𝐸𝑛 ∗ cos (𝑖) , dove  𝐸𝑛 è 𝑙
′ illuminamento normale e 𝑖 è 

l’angolo d’incidenza tra raggi luminosi e la normale alla superficie. 

 

 

Intensità luminosa 

Flusso luminoso emesso all'interno dell'angolo solido unitario in una 

direzione data.  

𝐼 = 𝐸 =
𝜑

𝜔
 

ed è una grandezza vettoriale. L'unità di misura nel SI è la candela (cd). 

 

 

Luminanza 

 La luminanza è il rapporto tra l’intensità luminosa di una sorgente nella 

direzione di un osservatore e la superficie emittente apparente così come viene 

vista dall’osservatore stesso 

𝐿 =  
𝐼

𝑆 ∗ 𝑐𝑜𝑠𝛼
 

𝛼 è 𝑙′𝑎𝑛𝑔𝑜𝑙𝑜 compreso tra la direzione di osservazione e l’asse 

perpendicolare alla superficie emittente. La luminanza si esprime in cd/𝑚2.  
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Parametri fisici delle stelle 
 

Le grandezze fondamentali che permettono di caratterizzare le stelle sono:  

 la distanza (d)  

 lo spettro della radiazione e.m. emessa 

 la luminosità totale o bolometrica (L)  

 la temperatura superficiale (T)  

 il raggio (R)  

 la massa (M) 

Le stelle possono essere approssimate a corpi neri, in quanto le uniche onde 

elettromagnetiche che non vengono assorbite dalla loro superficie sono quelle 

aventi una lunghezza d'onda di dimensione pari o maggiore del diametro della 

stella stessa.  Per studiare le proprietà dell’emissione continua delle stelle è 

utile introdurre il concetto di corpo nero. 

 

 

CORPO NERO 
 

 

Il corpo nero   è un corpo che assorbe tutta la radiazione che gli cade sopra. 

Appare perfettamente nero perché assorbe il 100% della radiazione che 

incide su di esso e non ne riflette nessuna. Il corpo nero è un oggetto teorico: 

nessun materiale assorbe tutta la radiazione incidente. 

 

Il corpo nero ha uno spettro di emissione caratteristico che dipende solo da un 

parametro: la temperatura. 

 

Lo studio della radiazione emessa dal corpo nero ha portato alla formulazione 

delle seguenti leggi: 
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Legge dello spostamento di Wien 
La frequenza massima, 𝜈𝑚𝑎𝑥 di uno 

spettro di corpo nero a temperatura T 

cresce linearmente con T.  

𝜈𝑚𝑎𝑥  ∝ T, il che comporta una 

proporzionalità inversa fra la 

temperatura assoluta e la lunghezza 

d’onda    

𝜆𝑚𝑎𝑥 𝑇 = 𝑏  

𝑏 =  2,9. 10−3 𝑚 ∙ 𝐾  

Per cui si ha: 𝜆𝑚𝑎𝑥 T =  2,9. 10−3 m∙K 

 

Legge di Stefan-Boltzmann 
L'energia erogata per unità di superficie e per unità di tempo è proporzionale 

alla quarta potenza della temperatura T:  

𝐼 = 𝜎𝑇4 

Applicazioni in astrofisica 

Per una stella, che approssimiamo ad una 

sfera di raggio R e superficie             𝑆 =

 4𝜋𝑅2 la legge di Stefan-Boltzmann diventa: 

L= 4𝜋𝑅2 𝜎T4 

Poiché le stelle non sono dei corpi neri 

perfetti, la temperatura è la temperatura efficace, quella che la superficie della 

stella avrebbe se si comportasse da corpo nero10. 

 
10 Lo spettro esistente in natura che si avvicina di più a quello di un corpo nero è 
quello della radiazione cosmica di fondo (CMB, ossia Cosmic Microwave Background) 
a 2.725 K, ma anche lo spettro delle stelle approssima sufficientemente a quello di 
un corpo nero. 
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Flusso e luminosità  
Il flusso di energia è dato dal rapporto fra 

l’energia emessa dalla stella nell’unità di 

tempo e la superficie della sfera di raggio 

pari alla distanza d dalla stella. Notiamo 

dunque che il flusso misurato sulla 

superficie terrestre dipende dalla 

luminosità della stella e dalla sua distanza. 

𝜑= 
𝐿

4𝜋𝑑2
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Logaritmi 
 

Definizione 
Il termine logaritmo è composto da due parole greche: logos = "ragione"  

e arithmos = "numero". “Numero di ragioni”: questa definizione appare 

naturale pensando alla ragione delle progressioni aritmetiche e geometriche 

che sono alla base della costruzione di Nepero.   

La storia di come nasce questo procedimento di calcolo è molto interessante: 

qui ci piace evidenziare che la motivazione alla base della scoperta dei 

logaritmi ed anche il 

motivo del loro 

successo fu la ricerca 

di efficienti strumenti 

di calcolo in grado di 

alleggerire il pesante 

fardello di cui erano 

gravati gli astronomi 

del tempo i quali, per 

poter predire il corso dei pianeti, si dovevano confrontare con grandi difficoltà 

di calcolo. Basta pensare al calcolo dell’orbita del pianeta Marte del povero 

Keplero. Quando Nepero pubblicò il suo lavoro sui logaritmi gli astronomi 

dissero che aveva regalato loro metà della vita! I logaritmi rendono infatti 

possibile trasformare prodotti in somme, quozienti in differenze, 

elevamenti a potenza in prodotti e calcoli di radici in quozienti: le 

operazioni vengono molto semplificate. 

Che cosa è un logaritmo?  

Generalmente si risponde che è una operazione inversa.  

Partiamo da una operazione conosciuta: l’estrazione di radice quadrata di un 

numero:   

√25 = 5 

La radice quadrata di 25 è quel numero che elevato a due restituisce 25, cioè 

il numero 5: infatti 52 = 25. Concludiamo dicendo che la radice è 

l’operazione inversa dell’elevamento a potenza.  
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Il concetto di logaritmo è abbastanza simile a quello della radice quadrata solo 

che non ci riporta al numero di partenza ma al suo esponente.  

Introduciamo la scrittura:   

log5 25 = 2 

Essa significa che:  

52 =25 

Definiamo logaritmo di un numero b (argomento del logaritmo) quel numero 

a cui bisogna elevare la base per ottenere il numero b. In notazione 

matematica: 

 log𝑎 𝑏 = x 

𝑎𝑥 = b 

Anche il logaritmo è l’operazione inversa dell’elevamento a potenza! 

 

log2 8 = x 

La domanda è “qual è l’esponente che devo dare alla base (2) per ottenere 

il numero (8)?”  

 

Scriviamo, applicando la definizione: 

2𝑥 = 8 

E siccome: 

8 = 23 

Allora, sostituendo: 

2𝑥 =  23 

E perciò*:   

x=3 

(*se le basi sono uguali, l’uguaglianza sarà verificata se saranno uguali 

anche gli esponenti) 
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È abbastanza evidente che i logaritmi e le potenze costituiscono due modalità 

di scrittura diversa, ma rappresentano la stessa cosa. 

 

Osservazione importante: la base dei logaritmi e l’argomento devono essere 

numeri reali positivi; in più, la base deve anche essere diversa da 1: 

𝑏 > 0 

0 <  𝑎 < 1 

𝑎 > 1 

Quindi, per esempio, non esistono log2(−5), log1 12,    𝑒𝑐𝑐. 

 

 

 

Proprietà dei logaritmi 
 

Il logaritmo del prodotto di 2 o più numeri positivi corrisponde alla 

somma dei logaritmi dei singoli fattori: 

 

(Nota:  𝑎𝑥 ∙ 𝑎𝑦 = 𝑎𝑥+𝑦) 

 

 

Il logaritmo del quoziente di 2 numeri positivi è eguale alla differenza tra 

il logaritmo del dividendo e il logaritmo del divisore: 

 

 
(Nota: 𝑎𝑥:𝑎𝑦 = 𝑎𝑥−𝑦) 

 

 

 

http://3.bp.blogspot.com/-UxzhX3qqgTI/UJlOcjc1UrI/AAAAAAAADHI/M-n6FfhCEYY/s1600/CodeCogsEqn(535).gif
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Il logaritmo della potenza a esponente reale di un numero positivo è 

uguale al prodotto dell'esponente per il logaritmo del numero: 

 

 
 

Una estensione di questa ultima proprietà è   

log𝑎 √𝑏
𝑚𝑛

 = log𝑎 𝑏
𝑚

𝑛  

(che possiamo scrivere come 
𝑚

𝑛
log𝑎 𝑏) 

 

 

A volte per calcolare un logaritmo può risultare utile effettuare un 

cambiamento di base. 

 Il loga b, la cui base è a, può essere scritto utilizzando un’altra base, per 

esempio il numero c: 

 

 

 

Ricorda inoltre che:   

log𝑎 1 = 0   (𝑖𝑛𝑓𝑎𝑡𝑡𝑖 𝑎
0 = 1)    𝑒       log𝑎 𝑎 = 1   (𝑖𝑛𝑓𝑎𝑡𝑡𝑖 𝑎

1 = 𝑎) 

 

 

Se la base di un logaritmo è il Numero di Nepero (chiamato meno 

frequentemente anche Numero di Eulero e indicato con                                                

e = 2,718281828459…) allora il logaritmo prende il nome di logaritmo 

naturale e si indica con ln.  

 

Quindi se vediamo 𝑙𝑛5, niente paura! Si tratta di log𝑒 5 

http://3.bp.blogspot.com/-tTrcHb2n5LY/UJlgyGTbE4I/AAAAAAAADI8/2dNWMCe93Oo/s1600/CodeCogsEqn(535).gif
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Se la base di un logaritmo è 10, il logaritmo prende il nome di logaritmo 

decimale e la base generalmente si omette; questo tipo di logaritmo è il più 

usato in astrofisica.  

Quindi se vediamo 𝑙𝑜𝑔7, ciò vuol dire log10 7 

 

I logaritmi sono utilizzati nella vita di tutti i giorni: ad esempio il gommista 

quando misura la pressione di una gomma utilizza uno strumento con una 

scala non lineare ma logaritmica; le scale sulla macchina fotografica sono 

logaritmiche; i nostri organi di senso sono "logaritmici". Questo ci permette 

di percepire un intervallo di informazioni molto più esteso di quello che 

avremmo se i nostri sensi fossero lineari.  Pogson, quando capì che il nostro 

occhio percepisce una differenza di una magnitudine (    per le magnitudini 

consulta le pagine successive del Bignamino) tra due stelle quando il rapporto 

tra le loro luminosità è uguale a 2,5 e che questo conserva la classificazione 

di Ipparco, formulò la sua formula in funzione del logaritmo del rapporto delle 

loro luminosità. 

  

 

 

 

 

 

 

 

 

  

Niente paura! 

Oggi avete le calcolatrici, e non 

si devono utilizzare le 

famigerate tavole logaritmiche 

che si utilizzavano un tempo per 

calcolare un logaritmo. 

Bisogna solo stare attenti ad 

utilizzare 

CORRETTAMENTE la 

calcolatrice! 

Nepero 
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Magnitudine delle stelle 
 

 

Quando si guarda il cielo si vede subito che le stelle ci appaiono più o meno 

brillanti (o luminose), ovvero sembrano avere diversa intensità luminosa. Gli 

astronomi descrivono la luminosità stellare osservata in termini di 

magnitudine apparente m. 

 

Nel II secolo a.C. Ipparco di Nicea, utilizzando 

l’unico strumento a sua disposizione (l’occhio 

umano), introdusse una classificazione delle stelle 

in 6 classi di luminosità che chiamò 

MAGNITUDINI.  

 

La scala scelta da Ipparco prevedeva che le stelle 

più luminose venissero collocate nella prima 

classe, quelle un po’ meno luminose nella seconda 

e, giù giù, fino a quelle appena visibili a occhio 

nudo, collocate nella sesta classe.  

 

Con l’osservazione del cielo attraverso gli 

strumenti ci si pose il problema di estendere la 

scala delle grandezze anche alle stelle non visibili ad occhio nudo. 

 

Un grossissimo contributo venne dallo studio della fisiologia dell’occhio, 

strumento sul quale erano state fatte le prime classificazioni. La risposta 

dell’occhio umano agli stimoli luminosi non è di tipo lineare, la reazione alla 

luce de reagisce alla sensazione della luce in modo logaritmico.  

 

Pogson è riuscito a dare una formulazione matematica alla scala delle 

magnitudini individuata da Ipparco. Pogson stabilì che il rapporto fra le 

intensità luminose di una stella di prima e di sesta grandezza era pari a 

100.  
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Magnitudine apparente 
 

Se I1 e l’intensità luminosa di una stella di magnitudine m1 ed I2 l’intensità 

di una stella di magnitudine m2  se m1 - m2 = -5 ed il rapporto   
I1

I2
= 100    

 

𝑚1  −  𝑚2 =  𝐾 𝑙𝑜𝑔
𝐼1
𝐼2
   

 
−5 = 𝐾 ∗ 2 

 

𝐾 = −2,5 
 

𝑚1  − 𝑚2 = −2.5 𝑙𝑜𝑔
𝐼1
𝐼2 
  

 

L’equazione di Pogson spiega il perché la magnitudine decresce quando 

l’intensità luminosa cresce. 

 

 

Quando si parla di intensità luminosa di una stella in realtà ci si riferisce al 

flusso di energia, 𝜑 , che abbiamo visto essere legato alla luminosità dalla:  

 𝜑 =
𝐿

4𝜋𝑑2
 

 

Se nella formula di Pogson 𝑚1  − 𝑚2 = −2.5 ∗ 𝑙𝑜𝑔
𝐼1

𝐼2
  sostituiamo alle 

intensità luminose il flusso si ottiene (a parità di luminosità):  

 

𝑚1  −  𝑚2 = −5 𝑙𝑜𝑔
𝑑2
𝑑1
  

 

La magnitudine apparente di una stella dipende dalla distanza. 

 

 

UTILE PER GLI ESERCIZI: 

Con gli strumenti, un fotometro per esempio, calcoliamo il rapporto 𝐼1/𝐼2 e 

così possiamo conoscere la differenza di magnitudine 𝑚1 −𝑚2. Se la 

differenza di magnitudine è di 1 unità:  

−1 = −2.5 log (
𝐼1
𝐼2
) 

log (
𝐼1
𝐼2
) = 0.4   →    

𝐼1
𝐼2
= 100.4    →     

𝐼1
𝐼2
= 2.512 = √100

5
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E se la stella apparentemente più debole fosse in realtà 

più brillante ma più lontana? 
 

 

 

 

 

Magnitudine assoluta 
 

Per rispondere a questa domanda è stata introdotta la scala delle magnitudini 

assolute indipendente dalla distanza. Per costruire questa scala è stata presa 

una distanza di riferimento pari a 10 pc. Quale sarà la magnitudine di una 

stella di cui si conosce la distanza e la magnitudine apparente se viene posta 

alla distanza di 10 pc? 

 

 

𝑀 −  𝑚 = −5 𝑙𝑜𝑔 
𝑑

10 𝑝𝑐
 

 
𝑀−𝑚 =  5 − 5𝑙𝑜𝑔𝑑 

 

 

Questa ultima viene anche indicata come formula del modulo di distanza.  

Il modulo di distanza (𝜇) è uguale alla differenza tra la magnitudine apparente 

e quella assoluta di un astro.  

 

𝜇 = 𝑚 −𝑀 

 

La scala delle magnitudini assolute consente di poter confrontare la luminosità 

intrinseca delle stelle. 

 

 

M =magnitudine assoluta (stella alla distanza di 10 pc) 

m =magnitudine apparente 

d = distanza della stella in pc 

 



Bignamino di Astronomia 

   139 

 

 

 

 

 

 

Magnitudine di un sistema multiplo 
 

Se vogliamo calcolare la magnitudine complessiva di due o più sorgenti 

luminose, è errato ritenere di poter sommare le magnitudini! Infatti possiamo 

sommare i flussi, ma le magnitudini dipendono da essi in relazione 

logaritmica! La relazione che ci permette di determinare la cosiddetta 

magnitudine integrata (ossia la magnitudine complessiva, “totale”) di n 

oggetti di magnitudine m1, m2,…,mn è la seguente: 

 

𝑚𝑖𝑛𝑡 = −2.5log (10
−0.4𝑚1 + 10−0.4𝑚2 +⋯+ 10−0.4𝑚𝑛) 

 

 

 

 

Magnitudine apparente di alcuni oggetti celesti: da sinistra verso destra, 

Sole, Luna piena, Venere, Sirio, Vega, magnitudine limite dell’occhio, 

magnitudine limite di un telescopio, magnitudine limite del telescopio 

spaziale Hubble. 
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Magnitudine integrata e superficiale 
 

Se invece vogliamo calcolare la magnitudine superficiale di un oggetto 

esteso di superficie angolare S (misurata in arcmin2 o arcsec2), ossia la 

magnitudine di un quadratino di superficie di lato uguale a 1 arcsec2 o 1 

arcmin2, allora applichiamo la seguente formula: 

𝑚𝑆𝑢𝑝 = 𝑚𝑖𝑛𝑡 + 2.5 log(𝑆) 

Se S è misurata in arcmin2, la msup è espressa in mag/arcmin2. Se S è misurata 

in arcsec2, msup è espressa in mag/arcsec2. 

 

 

Relazione Periodo – Luminosità 
 

Le stelle variabili cefeidi sono una categoria particolare di stelle pulsanti 

molto luminose la cui magnitudine assoluta media è legata al periodo di 

variabilità. Il loro studio ha permesso di determinare in modo pressoché 

preciso le distanze cosmiche. 

Per una cefeide di periodo P vale la seguente relazione: 

𝑀 = −2.85 log 𝑃 − 1.37 
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Estinzione atmosferica 
 

 

Estinzione è il termine usato in astronomia per descrivere l’assorbimento e 

la diffusione della radiazione elettromagnetica emessa da un oggetto a 

causa della materia presente tra l’oggetto e l’osservatore. L’atmosfera 

terrestre perturba la luce proveniente dalle stelle provocando oltre al 

fenomeno della rifrazione e del seeing11 anche l’assorbimento della 

radiazione. Un osservatore riceve un flusso minore di quello che avrebbe 

osservato fuori dall’atmosfera. Questa attenuazione prende il nome di 

estinzione della luce della stella, dal punto di vista osservativo si percepisce 

una magnitudine apparente inferiore da quella osservata fuori dall’atmosfera. 

La quantità di estinzione dipende dalla quantità di aria (airmass) che la luce 

deve attraversare. La quantità d’aria sopra l’osservatore (allo Zenit) definisce 

1 airmass.  

Lo strato di atmosfera che la luce attraversa dipende dal suo angolo zenitale. 

Se si sta osservando una 

stella allo Zenit, la sua 

luce sta attraversando 1 

airmass. Poiché lo 

spessore degli strati 

atmosferici è piccolissimo 

rispetto al raggio terrestre, 

l’atmosfera che circonda 

un osservatore si può 

considerare piana per 

angoli zenitali inferiori a 

70°. 

 

 

 

 
11 In astronomia, con il termine seeing ci si riferisce a particolari fenomeni 
atmosferici che peggiorano l’immagine di oggetti astronomici. Le condizioni di 
seeing per una determinata notte e una determinata località descrivono quanto 
l’atmosfera terrestre perturba (per turbolenza e temperatura) l’immagine dei corpi 
celesti osservati. Il seeing ha molti fattori che lo influenzano quali: la turbolenza 
atmosferica, l’umidità, le condizioni dello strumento utilizzato, l’inquinamento 
luminoso e la trasparenza del cielo. 
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Ed allora si nota che la massa d’aria (A) dipende da: 

 

𝐴 =
1

cos (𝑧)
 

 

Lo strato che la luce deve percorrere è maggiore di 1 airmass. Indichiamo con 

𝑚𝑎 la magnitudine apparente osservata e con 𝑚0 la magnitudine apparente 

osservata fuori dall’atmosfera. Si dimostra che: 

 

𝑚𝑎 = 𝑚0 + 𝑘𝐴 

 

𝑚𝑎 −𝑚0 = 𝑘𝐴 

 

∆𝑚 = 𝑘𝐴 

 

∆𝑚 = 𝑘
1

cos(𝑧)
 

 

 

Poiché l’angolo z è legato all’altezza h della stella dalla relazione: 

 

𝑧 = 90° −  ℎ  
 

Allora: 

 

∆𝑚 = 𝑘
1

cos(90° − ℎ)
 

 

Il coefficiente dipende dalle proprietà locali dell’atmosfera e dalla lunghezza 

d’onda della luce, oltre che all’ora delle osservazioni. Le condizioni 

dell’atmosfera possono cambiare da una notte all’altra, a volte anche nel corso 

di una stessa notte. Per misure di precisione, il coefficiente k deve essere 

determinato volta per volta.  

 

Calcoli empirici, con ipotesi molto semplificative, mostrano che allo Zenit: 

 

∆𝑚 = 0.21 

 

Mentre ad una distanza zenitale di 89°, appena 1° sopra l’orizzonte: 

 

∆𝑚 = 5.49 
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Per distanze zenitali minori di 70° (z < 70°) e per osservazioni effettuate da 

luoghi dove l’inquinamento luminoso è assente e la qualità del cielo è 

eccellente il coefficiente di estinzione è 𝑘 = 0.21 e la variazione di 

magnitudine si può calcolare con la seguente formula: 

 

∆𝑚 = 0.21
1

cos(90° − ℎ)
 

 

Alla distanza zenitale di 90° (ℎ = 0) l’applicazione di questa formula 

porterebbe ad una estinzione infinita. L’assorbimento atmosferico comporta 

l’impossibilità di osservare gli astri che si trovano appena sopra 

l’orizzonte, se si escludono quelli più luminosi.  

 

 

L’applicazione di formule complesse e metodi interpolativi di dati osservativi 

porta alla seguente tabella dove sono tabulati i valori fino a 𝑧 = 90°: 

𝒉 𝒛 𝑨 𝒎−𝒎𝟎 

90° 0° 1.00 0.21 

75° 15° 1.04 0.22 

60° 30° 1.15 0.24 

45° 45° 1.41 0.30 

30° 60° 2.00 0.42 

15° 75° 3.9 0.82 

10° 80° 5.8 1.2 

7° 83° 7.5 1.6 

5° 85° 10 2 

2° 88° 19 4 

0° 90° 40 8 
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COSMOLOGIA ELEMENTARE 
 

Redshift 
Su grandi scale, le galassie si stanno allontanando con velocità via via 

maggiore all’aumentare della loro distanza. Lo stesso spazio-tempo si sta 

espandendo e sta portando le galassie con sé. Com’è possibile mettere in 

luce il fenomeno dell’allontanamento delle galassie?  

Data una sorgente caratterizzata da un certo spettro a righe di emissione o di 

assorbimento, se essa possiede una componente della velocità non nulla nella 

direzione di osservazione (componente radiale), tale moto può essere rivelato 

dallo spostamento delle righe spettrali. In particolare:  

1. Se la sorgente si sta allontanando dall’osservatore, allora le 

righe saranno spostate a lunghezze d’onda maggiori rispetto 

alla loro posizione in laboratorio (laboratorio = sorgente in 

quiete). Dal momento che nello spettro visibile le lunghezze 

d’onda maggiori sono quelle corrispondenti al colore rosso, a 

tale fenomeno si dà il nome di spostamento verso il rosso (o 

redshift).  

2. Se la sorgente si sta avvicinando all’osservatore, allora le 

righe saranno spostate a lunghezze d’onda minori rispetto alla 

loro posizione in laboratorio. Dal momento che nello spettro 

visibile le lunghezze d’onda minori sono quelle 

corrispondenti al colore blu, a tale fenomeno si dà il nome di 

spostamento verso il blu (o blueshift).  

Come quantificare le entità degli spostamenti delle righe spettrali? 

Introduciamo la seguente relazione per il calcolo del redshift.  

𝑧 =
𝜆𝑜𝑏𝑠 − 𝜆𝑟𝑒𝑠𝑡

𝜆𝑟𝑒𝑠𝑡
 

Dove z è il redshift, 𝜆𝑜𝑏𝑠 è la lunghezza d’onda osservata della riga e 𝜆𝑟𝑒𝑠𝑡 la 

lunghezza d’onda della riga corrispondente a sorgente in quiete. Se z è 

positivo, cioè 𝜆𝑜𝑏𝑠 > 𝜆𝑟𝑒𝑠𝑡, allora siamo in presenza di uno spostamento verso 
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il rosso. Viceversa, se z è negativo, cioè 𝜆𝑜𝑏𝑠 < 𝜆𝑟𝑒𝑠𝑡, allora siamo in presenza 

di uno spostamento verso il blu.  

 

 

Redshift ottico e legge di Hubble-Lemaître 
 

La cosmologia moderna nasce con la legge di Hubble-Lemaître:  

v = Hd 

Che lega in modo proporzionale la velocità radiali v di allontanamento delle 

galassie alla loro distanza d (H è la costante di Hubble, il cui valore 

attualmente stimato è attorno a 𝐻 = 2.176 ∗ 10−18𝐻𝑧 ( 67.15
𝑘𝑚

𝑠 𝑀𝑝𝑐
 ): le 

galassie più distanti si allontanano più velocemente. Questa legge deriva 

da osservazioni che mostrano che tutte le righe spettrali delle galassie sono 

spostate verso il rosso (redshift) e che tale effetto è proporzionale alla 

luminosità apparente delle galassie, legata alla loro distanza.  

 

Maggiore è la distanza della galassia, tanto maggiore sarà il redshift: 

𝑧 =
𝐻𝑑

𝑐
 

 

 

Per z≪ 1 vale l’approssimazione del redshift come effetto Doppler (z≈
𝑣

𝑐
 )  e 

quindi z è direttamente proporzionale alla velocità di allontanamento delle 

galassie. 
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Redshift cosmologico 
 

Il redshift cosmologico è lo spostamento relativo in frequenza di un'onda 

elettromagnetica dovuto 

all'espansione dell'universo. 

Si spiega ipotizzando che le 

lunghezze d'onda varino allo 

stesso modo delle distanze 

per effetto dell'espansione 

dell'universo. La lunghezza 

d'onda è proporzionale al 

fattore di scala dell'universo. 

 

NOTA: Il redshift cosmologico non è dovuto all’effetto Doppler, non è dovuto 

ai moti relativi delle galassie. Le cause e le grandezze fisiche coinvolte sono 

completamente diverse.  

 

 

 

 

Redshift relativistico 
 

Quando z si avvicina al valore di 1, allora la formula da utilizzare diventa la 

seguente (la quale tiene conto degli effetti relativistici): 
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Redshift gravitazionale 
 

La   relatività generale prevede che la luce che si muove attraverso campi 

gravitazionali molto intensi sperimenterà uno spostamento verso il rosso o 

verso il blu. 

Il redshift gravitazionale (chiamato anche spostamento di Einstein) è dovuto 

dal fatto che un fotone, quando emerge da un campo gravitazione, perde 

energia e quindi presenta uno spostamento verso il rosso che dipende 

dall’intensità del campo gravitazionale misurata nel punto in cui si trova il 

fotone: 

 

𝑧 =  
𝐺𝑀

𝑟𝑐2
 

 

Tale relazione vale 𝑠𝑒 𝑟 ≫ 𝑟𝑠 , con:        

 

𝑟𝑠    =
2𝐺𝑀

𝑐2
  

(raggio di Schwarzschild) 

 

(M massa della stella, r raggio della stella) 

 

 

La formula generale è:  

𝑧 =  
1

√1 − 𝑟𝑠
 − 1 
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Effetto Doppler 
 

L’effetto Doppler è un fenomeno fisico che consiste nel cambiamento 

apparente, rispetto al valore originario, della frequenza o della lunghezza 

d’onda percepita da un osservatore raggiunto da un’onda emessa da una 

sorgente che si trovi in movimento rispetto all’osservatore stesso. Se la 

sorgente e l’osservatore si muovono entrambi rispetto al mezzo di 

propagazione delle onde, l’effetto Doppler totale è derivato dalla 

combinazione dei due movimenti. Tale effetto è facilmente percepibile 

quando ascoltiamo le sirene di un’ambulanza passante accanto a noi, che 

sembrano suonare in modi differenti a seconda che questa si allontani o si 

avvicini.  

Se una sorgente si sta allontanando emettendo onde di frequenza 𝑓, allora un 

osservatore stazionario percepirà le onde con una frequenza 𝑓′ data da: 

𝑓′ =
𝑣

𝑣 + 𝑣𝑠
𝑓 

Mentre, se si sta avvicinando: 

𝑓′ =
𝑣

𝑣 − 𝑣𝑠
𝑓 

Dove 𝑣 è la velocità delle onde nel mezzo, mentre 𝑣𝑠 è la velocità della 

sorgente rispetto al mezzo (considerando solo la componente nella direzione 

che unisce la sorgente all’osservatore). In termini relativi si può anche 

scrivere: 

∆𝑓

𝑓
=
𝑓′ − 𝑓

𝑓
=

𝑣
(𝑣 − 𝑣𝑠)

𝑓 − 𝑓

𝑓
= 

=
(

𝑣
𝑣 − 𝑣𝑠

− 1)𝑓

𝑓
=

𝑣

𝑣 − 𝑣𝑆
− 1 = 

=
𝑣 − 𝑣 + 𝑣𝑠
𝑣 − 𝑣𝑠

=
𝑣𝑠

𝑣 − 𝑣𝑠
  

Formula che è equivalente a quella analizzata in precedenza: 

∆𝜆

𝜆
=
𝑣𝑠
𝑐
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In generale, la formula della frequenza osservata è la seguente: 

𝑓′ = 𝑓 (
𝑣 ± 𝑣𝑟
𝑣 ± 𝑣𝑠

) 

Dove 𝑣𝑟 è la velocità dell’osservatore, 𝑣𝑠 la velocità della sorgente e 𝑣 la 

velocità delle onde nel mezzo considerato. Si distinguono 4 casi: 

1. Se l’osservatore va verso la sorgente e questa si avvicina 

all’osservatore, allora si considera il segno + al numeratore e il segno 

− al denominatore; 

2. Se l’osservatore va verso la sorgente e questa si allontana da lui, allora 

si considera il segno + sia al numeratore che al denominatore; 

3. Se l’osservatore si allontana dalla sorgente e questa si allontana 

dall’osservatore, allora si considera il segno − al numeratore e il 

segno + al denominatore; 

4. Se l’osservatore si allontana dalla sorgente e questa si avvicina a lui, 

si considera il segno − sia al numeratore che al denominatore.  

 

Un modo per ricordare i vari casi può essere il seguente: 

meno (1) e più (2) se mi avvicino 

più (3) e meno (4) se mi allontano 
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MISCELLANEA 
 

 

Risoluzione del sistema per il calcolo delle 

velocità su orbite non circolari 
 

 

{

𝑣𝑎𝑑𝑎 = 𝑣𝑝𝑑𝑝
1

2
𝑚𝑣𝑎

2 −
𝐺𝑚𝑀

𝑑𝑎
=
1

2
𝑚𝑣𝑝

2 −
𝐺𝑚𝑀

𝑑𝑝

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

1

2
𝑚𝑣𝑎

2 −
𝐺𝑚𝑀

𝑑𝑎
=
1

2
𝑚𝑣𝑝

2 −
𝐺𝑚𝑀

𝑑𝑝

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

1
2
𝑚𝑣𝑝

2𝑑𝑝
2

𝑑𝑎
2 −

𝐺𝑚𝑀

𝑑𝑎
=
1

2
𝑚𝑣𝑝

2 −
𝐺𝑚𝑀

𝑑𝑝

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

1
2𝑣𝑝

2𝑑𝑝
2

𝑑𝑎
2 −

1

2
𝑣𝑝
2 =

𝐺𝑀

𝑑𝑎
−
𝐺𝑀

𝑑𝑝
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{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝

𝑑𝑎
1

2
𝑣𝑝
2 (
𝑑𝑝
2

𝑑𝑎
2 − 1) = 𝐺𝑀(

1

𝑑𝑎
−
1

𝑑𝑝
)

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

1

2
𝑣𝑝
2 (
𝑑𝑝
2 − 𝑑𝑎

2

𝑑𝑎
2 ) = 𝐺𝑀(

𝑑𝑝 − 𝑑𝑎
𝑑𝑎𝑑𝑝

)

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝

𝑑𝑎

𝑣𝑝
2 = 2𝐺𝑀 (

𝑑𝑝 − 𝑑𝑎

𝑑𝑎𝑑𝑝
)(

𝑑𝑎
2

𝑑𝑝
2 − 𝑑𝑎

2)

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

𝑣𝑝
2 = 2𝐺𝑀 (

𝑑𝑝 − 𝑑𝑎

𝑑𝑎𝑑𝑝
) [

𝑑𝑎
2

(𝑑𝑝 + 𝑑𝑎)(𝑑𝑝 − 𝑑𝑎)
]

 

 

 

{
 
 

 
 𝑣𝑎 =

𝑣𝑝𝑑𝑝
𝑑𝑎

𝒗𝒑 = √𝟐𝑮𝑴
𝒅𝒂

𝒅𝒑(𝒅𝒑 + 𝒅𝒂)

 

 

 

Sostituendo la formula appena trovata nella prima equazione, si ottiene: 
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𝒗𝒂 = √𝟐𝑮𝑴
𝒅𝒑

𝒅𝒂(𝒅𝒑 + 𝒅𝒂)
 

 

Possiamo scrivere le due velocità anche in funzione (cioè in dipendenza) del 

semiasse maggiore e dell’eccentricità dell’orbita. Se chiamiamo il semiasse 

maggiore dell’orbita ellittica a, valgono le seguenti relazioni: 

 

𝑑𝑎 = 𝑎(1 + 𝑒)                      𝑑𝑝 = 𝑎(1 − 𝑒) 

 

 

Quindi:  

 

𝑣𝑝 = √2𝐺𝑀
𝑎(1 + 𝑒)

𝑎(1 − 𝑒)[𝑎(1 − 𝑒) + 𝑎(1 + 𝑒)]
= 

 

= √2𝐺𝑀
1 + 𝑒

(1 − 𝑒)[𝑎(1 − 𝑒 + 1 + 𝑒)]
= 

 

= √
2𝐺𝑀

2𝑎
(
1 + 𝑒

1 − 𝑒
) = √

𝑮𝑴

𝒂
(
𝟏 + 𝒆

𝟏 − 𝒆
) 

 

 

Sostituendo anche nel caso di 𝑉𝑎: 

 

𝑣𝑎 = √
𝑮𝑴

𝒂
(
𝟏 − 𝒆

𝟏 + 𝒆
) 

 

 

 

Si ricorda inoltre che: 

𝒂 =
𝒅𝒂 + 𝒅𝒑

𝟐
                𝒆 =

𝒅𝒂 − 𝒅𝒑

𝒅𝒂 + 𝒅𝒑
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Angolo di fase 
 

Dalla Terra T si vede il disco di un pianeta O, il cui diametro è AC, illuminato 

dal Sole S. Il disco, visto da T, appare luminoso da A a B e scuro da B a C. Si 

dice fase del pianeta il rapporto: 

𝑞 =
𝐴𝐵

𝐴𝐶
 

Se 𝛼 = 𝑆𝑂𝑇, allora 𝑂𝐵 = 𝑂𝐿 ∗ 𝑐𝑜𝑠𝛼 = 𝑂𝐴 ∗ 𝑐𝑜𝑠𝛼, cioè: 

𝑞 =
𝐴𝐵

𝐴𝐶
=
𝐴𝑂 + 𝐴𝑂𝑐𝑜𝑠𝛼

2𝐴𝑂
=
𝐴𝑂 (1 + 𝑐𝑜𝑠𝛼)

𝐴𝑂 ∗ 2
 

 

𝑞 =
 1 + 𝑐𝑜𝑠𝛼

2
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Stelle 
 

Evoluzione stellare e Diagramma H-R 
L’evoluzione stellare è l’insieme dei cambiamenti che una stella sperimenta 

nel corso della sua esistenza. La stella nel corso della sua vita subisce 

variazioni di luminosità, raggio e temperatura anche molto pronunciate. 

Tuttavia, dato che il ciclo vitale di una stella si estende per un tempo molto 

lungo su “scala umana”, risulta impossibile per un uomo seguire passo passo 

l’intero ciclo di vita. Uno strumento ancora oggi fondamentale per inquadrare 

immediatamente lo stato e l’evoluzione di una stella è il diagramma 

Hertzsprung-Russell (diagramma H-R). Esso riporta temperatura 

superficiale e luminosità (o classe spettrale e magnitudine), che variano 

insieme al raggio in funzione dell’età, della massa e della composizione 

chimica della stella e così permette di sapere in che fase essa si trovi.  

 

Il diagramma Hertzsprung-Russell (dal nome dei due astronomi che verso il 

1910 lo idearono indipendentemente) è uno “strumento” teorico che mette in 

relazione la temperatura (riportata in ascissa, o la classe spettrale) e la 
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luminosità (riportata in ordinata, o la magnitudine assoluta) delle stelle. Nel 

diagramma la temperatura aumenta spostandosi verso sinistra lungo l’ascissa 

e la luminosità cresce salendo lungo l’ordinata.  

Dal grafico, è possibile notare che la disposizione delle stelle nel grafico non 

è casuale, ma è addensata in alcune regioni. La maggior parte di esse (tra cui 

il Sole adesso) si dispone lungo la sequenza principale, una linea che 

attraversa il grafico in modo trasversale. Le stelle di questa sequenza 

presentano una luminosità che è in forte relazione con la temperatura: le stelle 

più calde (posizionate a sinistra nella sequenza principale) hanno una 

luminosità che è milioni di volte superiore a quella delle stelle rosse di bassa 

temperatura.  

Nel grafico sono presenti anche le zone delle stelle a bassa temperatura e alta 

luminosità (zona delle stelle giganti rosse e supergiganti rosse), che 

diventano altamente luminose grazie alle loro dimensioni imponenti, e la zona 

delle stelle di alta temperatura e bassa luminosità (zona delle stelle nane 

bianche), che hanno un diametro molto minore di quello delle stelle di pari 

temperatura situate nella sequenza principale.  

 

 

 

Ammassi stellari 
Un ammasso stellare è un gruppo di stelle molto denso. In generale, le stelle 

nascono in gruppi che, inizialmente legati gravitazionalmente, giungono col 

tempo a disgregarsi. Essendo nate dalla stessa nebulosa, hanno le stesse 

composizioni chimiche. Vi sono 2 tipi principali di ammassi: 

• ammassi globulari, gruppi stellari densissimi formati da centinaia di 

migliaia di stelle molto vecchie 

• ammassi aperti, gruppi stellari che contengono migliaia di stelle 

giovani. Sono così chiamati perché non hanno alcuna struttura 

particolare 
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Albedo 
 

Nelle sezioni precedenti di questo Bignamino abbiamo sinteticamente trattato 

le grandezze principali che caratterizzano la radiazione luminosa, le relazioni 

che le coinvolgono e il concetto di spettro elettromagnetico. Adesso vogliamo 

fornire alcuni concetti per interpretare “macroscopicamente” l’interazione 

della radiazione luminosa con la materia.  

Ogni oggetto interagisce con la radiazione luminosa. Immaginiamo dunque 

un raggio luminoso, caratterizzato da una certa lunghezza d’onda 𝜆, che si 

avvicina alla superficie di un oggetto: tale raggio che si avvicina all’oggetto 

verrà chiamato raggio incidente. Se immaginiamo di mandare la retta 

perpendicolare alla superficie dell’oggetto nel punto in cui il suddetto raggio 

incide, la “direzione di provenienza” del raggio si può caratterizzare 

attraverso l’angolo che esso forma con tale retta perpendicolare: quest’angolo 

si chiamerà angolo d’incidenza.  

 

A questo punto l’oggetto potrà interagire con la radiazione luminosa in tre 

modi: 

1) Il raggio può essere riflesso, come succede quando ci specchiamo: 

vediamo la nostra immagine riflessa in uno specchio perché i raggi 

luminosi che provengono dal nostro corpo “rimbalzano” sulla 

superficie della lastra metallica levigata posta dietro il vetro dello 

specchio e tornano ai nostri occhi; 

2) Il raggio può essere assorbito dal corpo su cui incide; 

3) Il raggio può essere trasmesso, cioè “entra” nel corpo nel punto di 

incidenza ed “esce” in un altro punto. 
 

Dato un corpo, tutti questi fenomeni dipendono in generale da molti 

parametri: l’angolo di incidenza della luce, la lunghezza d’onda della luce 

incidente, e anche la posizione del punto d’incidenza, visto che la 

composizione di un oggetto può cambiare da punto a punto (l’esempio è una 

roccia costituita da vari minerali diversi). 

Per la conservazione dell’energia, la somma delle intensità delle radiazioni 

riflessa, trasmessa e assorbita dev’essere uguale al totale della radiazione 

incidente. 
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Un corpo può essere tale da non farsi attraversare dalla radiazione luminosa. 

Nel caso nostro, i pianeti ne sono un esempio. Come caratterizzare dunque 

complessivamente la riflessione e l’assorbimento della radiazione 

elettromagnetica da parte delle superfici planetarie? Il parametro che viene 

introdotto è l’albedo. 

 

L’albedo di una determinata superficie è definita come il rapporto fra 

l’intensità della radiazione riflessa dalla superficie stessa e la radiazione 

totale incidente su tale superficie. In generale, ogni tipo di materiale ha una 

sua albedo (vd. Tabella allegata in conclusione di questo Bignamino). 

 

 

L’albedo è una grandezza adimensionale (numero puro) in quanto rapporto 

di due grandezze omogenee; è un numero compreso fra 0 e 1 (l’intensità della 

radiazione riflessa non può mai superare quella della radiazione incidente) e 

può essere espressa in percentuale moltiplicando per 100%. 

 

 

L’albedo “complessiva” di una 

superficie planetaria dipende 

dunque dalla composizione 

della superficie: è appunto un 

dato che ci informa se la 

superficie è costituita da 

materiali molto riflettenti o 

poco riflettenti. 

Siccome i pianeti non 

trasmettono sostanzialmente la 

radiazione luminosa che incide su di essi, per la conservazione dell’energia la 

radiazione che non viene riflessa viene assorbita. Sempre per la conservazione 

dell’energia, la percentuale di intensità che viene assorbita sarà uguale al 

100% meno l’albedo. 
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La quantità di luce riflessa determina la magnitudine di un pianeta, mentre la 

quantità di radiazione assorbita ne determina la sua temperatura, come si potrà 

evincere dai due seguenti esempio molto istruttivi formulati come esercizi 

teorici: 

Esercizio 1: Determinare la magnitudine apparente di un pianeta sferico di 

raggio R visto da un altro pianeta a distanza d da esso, nell’ipotesi che il 

pianeta venga visto all’opposizione e si trovi a distanza a dalla stella madre, 

avente magnitudine 𝑚𝑠 . Sia 𝑎1 la distanza del secondo pianeta dalla stella 

madre. 

 

Per prima cosa scriviamo la formula di Pogson ponendoci sul pianeta da cui 

si “osserva” la scena (lo chiameremo pianeta B, mentre il pianeta P sarà quello 

di cui si vuole calcolare la magnitudine), confrontando la magnitudine 

incognita del pianeta (m) con quella della stella 

𝑚 −𝑚𝑠 =  −2.5 log (
𝐹

𝐹𝑠
) 

Dove con F si è indicato il flusso che proviene da P e arriva su B, mentre con 

𝐹𝑠 il flusso dalla stella al pianeta B. Come calcolare questo rapporto? 

Dobbiamo calcolare F. Per prima cosa calcoliamo il flusso della stella 𝐹𝑠’ alla 

distanza di P dalla stella: 

𝐹𝑠
′ =

𝐿𝑠
4𝜋𝑎2
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(𝐿𝑠  = luminosità stella) 

Il flusso 𝐹𝑠  sarà invece uguale a: 

𝐹𝑠 =
𝐿𝑠

4𝜋𝑎1
2 

La quantità di energia intercettata dalla superficie di P ogni secondo è 

direttamente proporzionale all’area della sua sezione (un cerchio di raggio R): 

𝐿𝑖𝑛𝑡 = 𝐹𝑠
′ ∗  𝜋𝑅2 

Mentre la potenza (energia al secondo) riflessa da P sarà uguale alla 

luminosità riflessa moltiplicata per l’albedo di P (che indicheremo con la 

lettera 𝐴): 

𝐿𝑟𝑖𝑓𝑙 = 𝐿𝑖𝑛𝑡 ∗ 𝐴 

Se solo una faccia del pianeta è illuminata, 

possiamo assumere che la luce riflessa si 

propaghi su superfici semisferiche centrate 

nel pianeta B, dunque il flusso che da P arriva 

a B sarà: 

𝐹 =
𝐿𝑟𝑖𝑓𝑙

2𝜋𝑑2
 

 

Applicando tutte le relazioni trovate sopra a 

quest’ultima: 

 

𝐹 =   
𝐿𝑟𝑖𝑓𝑙

2𝜋𝑑2
= 
𝐿𝑖𝑛𝑡 ∗ 𝐴

2𝜋𝑑2
= 
𝐹𝑠
′ ∗ 𝜋𝑅2 ∗ 𝐴

2𝜋𝑑2
= 

𝐿𝑠 𝑅
2 𝐴

8𝜋𝑎2 𝑑2
 

 

Quindi finalmente: 

𝐹

𝐹𝑠
= 

𝐿𝑠 𝑅
2 𝐴

8𝜋𝑎2 𝑑2
∗
4𝜋𝑎1

2

𝐿𝑠
= 
𝑅2 𝑎1

2 𝐴  

2 𝑑2 𝑎2
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Questo rapporto si può sostituire nella Formula di Pogson e ottenere 

l’espressione della corrispondente magnitudine apparente del pianeta P visto 

dal pianeta B. 

 

Esercizio 2: Determinare la temperatura d’equilibrio della superficie di un 

pianeta sferico di raggio r a distanza a dalla sua stella madre, di raggio R e 

temperatura T, assumendo che sia la stella sia il pianeta si comportino come 

corpi neri. Sia A l’albedo del pianeta. 

 

La stella emette come un corpo nero, dunque vale la Legge di Stefan-

Boltzmann: 

𝐿𝑠𝑡𝑒𝑙𝑙𝑎 = 4𝜋𝑅
2𝜎𝑇4                𝜎 = 5.67 10−8

𝑊

𝑚2𝐾4
 

Il flusso stellare che arriva alla distanza del pianeta è: 

𝐹𝑠𝑡𝑒𝑙𝑙𝑎 =
𝐿𝑠𝑡𝑒𝑙𝑙𝑎
4𝜋𝑎2

=
𝑅2

𝑎2
𝜎𝑇4 

La luminosità intercettata dalla superficie del pianeta sarà pari a questo flusso 

moltiplicato per la superficie della sezione del pianeta (un cerchio di raggio 

R, vedi esercizio teorico precedente): 

𝐿𝑖𝑛𝑐 =
𝑅2

𝑎2
𝜎𝑇4 ∗ 𝜋𝑟2 

La quantità di energia assorbita ogni secondo sarà pari a una frazione 1 − 𝐴 

del totale incidente: 
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𝐿𝑎𝑠𝑠 = (1 − 𝐴) ∗
𝑅2

𝑎2
𝜎𝑇4 ∗ 𝜋𝑟2 

 

All’equilibrio, la potenza assorbita dal pianeta dev’essere uguale a quella 

emessa per irraggiamento dalla superficie del pianeta stesso (se il corpo è 

all’equilibrio termico non ci dev’essere calore “netto” assorbito o ceduto, 

altrimenti varierebbe la temperatura): ma se assumiamo che il pianeta stesso 

sia un corpo nero, anche per quest’emissione varrà la legge di Stefan-

Boltzmann: 

𝐿𝑎𝑠𝑠 = 𝐿𝑒𝑚𝑒𝑠𝑠𝑎 

 

(1 − 𝐴) ∗
𝑅2

𝑎2
𝜎𝑇4 ∗ 𝜋𝑟2 =  4𝜋𝑟2𝜎𝑇𝑝

4 

 

Dove 𝑇𝑝 è la temperatura che stiamo cercando. 

 

(1 − 𝐴)𝑅2

𝑎2
𝑇4 = 4 𝑇𝑝

4       𝑑𝑎 𝑐𝑢𝑖  

 

𝑇𝑝 = 𝑇 √
1 − 𝐴

4
∗
𝑅2

𝑎2
 

4

= 𝑇√1 − 𝐴
4

  √
𝑅

2𝑎
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PROBLEMI ED ESERCIZI 
 

Sistemi di riferimento 
 

L’altezza di Rigel 
Quando la stella Rigel (𝛿 =  −8° 13’) passa al meridiano di Roma (𝜑 =

41°55’) a quale altezza si trova? 

Soluzione:  

Quando la stella Rigel passa al meridiano di Roma essa raggiunge la posizione 

di culminazione superiore in corrispondenza del punto cardinale Sud. Dunque 

la sua altezza sull’orizzonte è pari all’altezza dell’Equatore celeste alla 

latitudine di Roma (90°-φ) sommata alla declinazione dell’astro. Dunque:  

ℎ𝑅𝑖𝑔𝑒𝑙 = 90° − 𝜑 + 𝛿 = 90° − 41°55’ − 8°13’ = 39°52’ 

 

 

Dove vedere Canopo 
A quale latitudine comincia a essere visibile la stella Canopo (𝛿 = −52°40’) 

appena all’orizzonte?  

Soluzione:  

Affinché la stella Canopo sia appena visibile all’orizzonte per un osservatore 

posto alla latitudine φ, è necessario che l’Equatore celeste abbia un’altezza 

sull’orizzonte pari al valore assoluto della sua declinazione. Quindi è 

necessario che 90° − 𝜑 = |𝛿| e cioè: 

𝜑 = 90° − |𝛿| = 90° − 52°40’ = 37°20’ 

In realtà bisogna tenere conto dell’effetto della rifrazione atmosferica che 

“alza le stelle” o equivalentemente “abbassa l’orizzonte” di un angolo di 35’. 

Quindi in realtà Canopo si può osservare anche a una latitudine leggermente 

più settentrionale pari a 37°20’ + 0°35’ = 37°55’ circa. 
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Questione di ombre 
Quale curva descrive l’ombra di uno stilo verticale posto al polo nord il 21 

giugno? Qual è il rapporto fra la lunghezza l dell’ombra e l’altezza h dello 

stilo? 

Soluzione: 

 Il 21 giugno il Sole ha declinazione massima, pari al valore dell’obliquità 

dell’eclittica, quindi circa 23°27’. Dal momento che al polo nord l’orizzonte 

coincide con l’Equatore celeste e i paralleli celesti si trovano quindi su piani 

paralleli all’orizzonte, la rotazione diurna non contribuirà a far tramontare il 

Sole, che descriverà una circonferenza nel cielo; pertanto la curva descritta 

dallo stilo verticale è una circonferenza. Il rapporto l/h è il reciproco della 

tangente dell’altezza del sole, pari a 23°27’ 

𝑙

ℎ
=

1

𝑡𝑎𝑛23°27′
= 2.3 

 

 

 

Il Sole dei Cinesi – Problema gara IAO 2002 
I Cinesi, nel 1100 a.C., avevano trovato che l’altezza del Sole a mezzodì era 

79°7’ nel solstizio estivo e 31°19’ in quello invernale. A quale latitudine 

hanno fatto l’osservazione e qual era allora l’obliquità dell’Eclittica? 

Soluzione:  

La media aritmetica dei valori delle due culminazioni del sole a mezzodì al 

solstizio estivo ed invernale è pari all’altezza dell’Equatore celeste. Quindi: 

90° − 𝜑 =
ℎ𝑒𝑠𝑡𝑎𝑡𝑒 + ℎ𝑖𝑛𝑣𝑒𝑟𝑛𝑜

2
→ 𝜑 = 90° −

ℎ𝑒𝑠𝑡𝑎𝑡𝑒 + ℎ𝑖𝑛𝑣𝑒𝑟𝑛𝑜
2

= 34°47′ 

L’obliquità dell’eclittica è la differenza fra l’altezza massima del sole e 

l’altezza dell’Equatore celeste: 

𝜀 = ℎ𝑒𝑠𝑡𝑎𝑡𝑒 − (90° − 𝜑) = 79°7
′ − 90° + 34°47′ = 23°54′. 

In generale, l’obliquità dell’eclittica varia da 21°55’ a 24°20’, con un periodo 

di circa 40000 anni. 
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Osservazione di una stella 
Ci troviamo in un luogo di latitudine 𝜑 = 42° 30′15′′ 𝑁 e longitudine          

𝜆 = 15° 28′18′′𝐸. Osserviamo una stella, di ascensione retta 

5ℎ 32 𝑚𝑖𝑛 3 𝑠𝑒𝑐 e declinazione −00° 15’ 20”, che passa al meridiano alle 

20:30 del 14/01/2020. A quale altezza culminava? Quale era la sua distanza 

zenitale? In quale data, dallo stesso luogo e allo stesso orario, si è potuto 

vederla sorgere ad est?  

 

Soluzione:  

L’altezza massima di una stella (quando culmina) è data dalla relazione: 

ℎ = 90° − 𝜑 + 𝛿 

Quindi: 

ℎ = 90° − 42°30′15" − 0° 15' 20"= 47° 14' 25"  

La distanza zenitale è invece data da:  

𝑧 = 90° − ℎ = 90° − 47° 14′25′′ = 42° 45′35′′ 

Un dato importante per poter rispondere alla terza richiesta è sapere che le 

stelle “anticipano” il loro sorgere di 3 𝑚𝑖𝑛 56 𝑠𝑒𝑐/𝑔𝑖𝑜𝑟𝑛𝑜.  

Quindi per sapere quanti giorni prima la stella sorgeva ad est (m): 

𝑚 =
𝛼

Δ𝑡
=

(5ℎ32min3sec)

3𝑚𝑖𝑛 56sec/𝑔𝑖𝑜𝑟𝑛𝑜
= 84 𝑔𝑖𝑜𝑟𝑛𝑖 

84 giorni prima del 14/01/2020 era il 21/10/2019. 
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I moti della Terra e la misura del tempo 
 

Quando (non) osservare Castore 
In quale istante di tempo siderale la stella Castore (𝛼 = 7ℎ 33𝑚 31𝑠;           

𝛿 = +31°55’35” ) è alla culminazione inferiore? 

Soluzione:  

Alla culminazione inferiore la stella Castore ha un angolo orario pari a 12h. Il 

tempo siderale, ossia l’angolo orario del punto gamma, è uguale alla somma 

di angolo orario e ascensione retta di una generica stella; in questo caso:  

𝑇𝑆 = 𝛼 + 𝐻 = 7ℎ 33𝑚 31𝑠 +  12ℎ =  19ℎ 33𝑚 31𝑠 

 

 

Passaggi al meridiano 
Se in un dato giorno una stella passa al meridiano inferiore alle 21, a quale 

ora (all’incirca) vi passerà un mese dopo? 

Soluzione:  

L’ora a cui si riferisce il problema è, per esempio, quella indicata da un 

normale orologio, quindi è un tempo solare medio e non siderale. Siccome nel 

corso di un mese la stella non cambia la sua posizione rispetto al punto 

gamma, se il problema avesse chiesto l’ora siderale della successiva 

culminazione inferiore la risposta sarebbe stata comunque “alle 21”; siccome 

però il problema si riferisce a un tempo solare medio, dobbiamo tenere conto 

della differenza tra giorno solare e giorno siderale: quest’ultimo è più corto 

del primo di un valore pari a circa 4 minuti (più esattamente 3min 56s). 

Siccome un mese contiene mediamente 30 giorni, la stella anticiperà la sua 

culminazione di circa 4𝑚𝑖𝑛 ∗ 30 = 120𝑚𝑖𝑛 = 2ℎ e quindi culminerà 

all’incirca alle 19. 
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Longitudini diverse, tempi diversi 
Una città A è posta alla longitudine 43°12’ E di GW (Greenwich). Quando in 

A l’orologio segna le 20h35m siderali, in un’altra città B l’orologio segna le 

23h12m siderali. Qual è la longitudine di B? 

Soluzione: 

 La differenza dei due tempi siderali che l’orologio segna in A e in B è uguale 

alla differenza delle longitudini dei due luoghi. Quindi: 

∆𝜆 = 𝛥𝑇𝑆  

 𝜆𝐵 − 𝜆𝐴 = 𝑇𝑆𝐵 − 𝑇𝑆𝐴 

𝜆𝐵 = 𝑇𝑆𝐵 − 𝑇𝑆𝐴 + 𝜆𝐴(𝑒𝑠𝑝𝑟𝑒𝑠𝑠𝑎 𝑖𝑛 𝑜𝑟𝑒!) 

𝜆𝐵 = 23ℎ12𝑚 − 20ℎ35𝑚 + 2ℎ53𝑚 = 5ℎ30𝑚 

Trasformo in gradi: 

𝜆𝐵 = 82°30′ 

 

 

Da un segno zodiacale all’altro 
Quanto tempo è necessario affinché il punto gamma passi da un segno 

zodiacale a un altro? 

Soluzione: 

 Il punto gamma non è fisso nel cielo, bensì, per via di uno dei moti millenari 

della Terra, il moto di precessione, esso si sposta di circa 50” all’anno lungo 

l’Eclittica. Dal momento che i segni zodiacali sono dodici, in media ognuno 

di essi occupa un settore lungo l’Eclittica pari a 360/12 = 30° = 108000”.  
Ne discende che il tempo necessario affinché il punto gamma copra questa 

distanza angolare risulta pari a 𝑡 = (108000”/50”) 𝑎𝑛𝑛𝑖 = 2160 𝑎𝑛𝑛𝑖 circa. 
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Che velocità! 
La Terra impiega circa 23 ore e 56 minuti a compiere una rotazione completa 

attorno al proprio asse. Con quale velocità tangenziale si muove un punto 

all’equatore per effetto del moto di rotazione della Terra? Quanto vale 

l’accelerazione centripeta che agisce su questo punto? Quale forza centripeta 

agisce su un corpo di massa 1,3 kg all’equatore? 

Soluzione:  

Il problema, incentrato sul moto di rotazione terrestre (il moto dei punti della 

Terra attorno all’asse terrestre) è un semplice esercizio di cinematica. 

Conoscendo il periodo e la lunghezza della circonferenza equatoriale (poiché 

è noto che il raggio della Terra ha un valore di 6378 km), è possibile 

determinare la velocità di rotazione all’equatore: il moto è circolare uniforme:  

𝑣 =
2𝜋𝑅

𝑇
=
2𝜋𝜏 ∙ 6378𝑘𝑚

23,93ℎ
= 1674

𝑘𝑚

ℎ
 

L’accelerazione centripeta vale: 

𝑎 =
𝑣2

𝑅
=
(1674 ÷ 3,6)2

6378000
= 33,9 ∙ 10−3

𝑚

𝑠2
 

Per la seconda legge della dinamica, la forza centripeta su un corpo di massa 

m allora vale: 

𝐹 = 𝑚𝑎 = 1,3 ∙ 33,9 ∙ 10−3 = 44,1 ∙ 10−3𝑁 

 

 

Che ore sono a Belo Horizonte? 
In un dato luogo, a che ora di tempo siderale culmina il Sole medio in un dato 

giorno, sapendo che sedici giorni prima esso culminava alle 15h 12m 48s di 

tempo siderale?  Se ci troviamo a Belo Horizonte (longitudine 𝜆 = 43°56’16” 

W) al mezzogiorno vero e l’equazione del tempo per quel giorno è pari a 𝐸𝑇 =

−8𝑚7𝑠, che ora segna l’orologio dell’osservatore? 
 

Soluzione: 

La prima richiesta del problema si risolve tenendo conto che giorno solare 

medio e giorno siderale hanno diversa durata: infatti il giorno siderale è più 
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corto del giorno solare medio di circa 3𝑚56𝑠. Pertanto, se in un dato giorno 

il punto gamma e il Sole medio hanno raggiunto la culminazione nel 

medesimo istante, il giorno successivo il Sole medio culminerà 3𝑚56𝑠 dopo 

il punto gamma. Quindi il Sole accumulerà un ritardo pari a 16 ∗ 3𝑚56𝑠 =

1ℎ2𝑚56𝑠 che andrà sommato all’ora siderale data dal problema:  

 

𝑇𝑆 = 15ℎ 12𝑚 48𝑠 +  1ℎ 2𝑚 56𝑠 =  16ℎ 15𝑚 44𝑠 
 

Se a Belo Horizonte è mezzogiorno vero, vuol dire che sono le 12h di tempo 

solare vero. L’equazione del tempo è la differenza fra tempo solare medio e 

tempo solare vero, quindi: 
 

𝑇𝑆𝑀 − 𝑇𝑆𝑉 = 𝐸𝑇 

 

𝑇𝑆𝑀 = 𝑇𝑆𝑉 + 𝐸𝑇 = 12ℎ −  8𝑚 7𝑠 =  11ℎ 51𝑚 53𝑠 
 

L’orologio dell’osservatore è però in accordo col tempo del meridiano 

centrale del fuso di Belo Horizonte, che ha longitudine 3h W, mentre Belo 

Horizonte ha longitudine 2h 55m 45s W: essa è quindi più avanti di:  

 

3ℎ − 2ℎ 55𝑚 45𝑠 = 4𝑚 15𝑠 
 

L’orologio segnerà quindi le ore 11ℎ 51𝑚 53𝑠 −  4𝑚 15𝑠 =  11ℎ 47𝑚 38𝑠 

 

 

Che ore sono a Bergamo? 
A Bergamo (λ= 9° 40’ 12” E) i raggi del Sole, in un dato momento, si 

proiettano esattamente sulla linea della meridiana di Città Alta. In quel dato 

giorno l’equazione del tempo è +5m 12s. se il tempo siderale a mezzanotte di 

quel giorno a Greenwich risultava pari a 3h 21m 20s, qual è il tempo siderale 

a Greenwich nell’istante del problema? 
 

Soluzione: 

La longitudine di Bergamo, espressa in ore, minuti e secondi è 38m 41s E. Se 

il disco luminoso si proietta sulla linea meridiana, è mezzogiorno vero; quindi 

il tempo solare medio sarà pari a:  

𝑇𝑆𝑀 =  𝑇𝑆𝑉 +  𝐸𝑇 =  12ℎ +  5𝑚 12𝑠 =  12ℎ 5𝑚 12𝑠 
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Greenwich si trova 38m 41s a ovest di Bergamo, quindi è anche 38m 41s 

indietro: a Greenwich sono quindi le: 

 

12ℎ 5𝑚 12𝑠 −  38𝑚 41𝑠 =  11ℎ 26𝑚 31𝑠 
 

Sono passate quindi 11h 26m 31s dalla mezzanotte: per convertire questo 

tempo medio in tempo siderale moltiplichiamo per il fattore di conversione 

366.25/365.25:  

 

𝛥𝑇𝑆 (𝐺𝑟𝑒𝑒𝑛𝑤𝑖𝑐ℎ) =  (
366.25

365.25
) ∗ (11.4419444 ℎ) =  11.4732394ℎ = 

 

=  11ℎ 28𝑚 24𝑠 
 

Quindi a Greenwich sono le: 

 

3ℎ 21𝑚 20𝑠 +  11ℎ 28𝑚 24𝑠 =  14ℎ 49𝑚 44𝑠  

 

di tempo siderale. 

 

 

Curve solari 
Si valuti, argomentando opportunamente, come varia l’Equazione del Tempo 

nel corso dell’anno solare; se in un piano cartesiano in ascissa indichiamo 

l’ET e in ordinata la declinazione del Sole, che curva si ottiene? 

 

Risposta:  

L’equazione del tempo si annulla quattro volte l’anno: a metà aprile, a metà 

giugno, verso Natale e ai primi di settembre: il sole medio e il sole vero 

culminano contemporaneamente; (1) Da Natale a metà aprile il sole medio 

anticipa il sole vero; (2) da metà aprile a metà giugno il sole vero anticipa il 

sole medio; da metà giugno a inizio settembre come (1) e da inizio settembre 

a Natale come (2). Oltre a “oscillare in orizzontale”, in un anno il sole “oscilla 

in verticale”, nel senso che assume declinazioni da 23°27’ a -23°27’. La curva 

che si ottiene è quindi una sorta di “8” chiamata analemma: essa è anche la 

curva che è formata dalle posizioni in cielo del sole vero registrate a 

mezzogiorno medio locale ogni giorno dell’anno. 
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Figura 1. Analemma DEC/ET 

Figura 2. Analemma visualizzato nel cielo di Atene 
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Orologi stellari 
Una stella di ascensione retta AR=11h 12m 13s culmina in un dato luogo della 

Terra alle ore 13h 04m 02s di tempo medio. Considerando che a Greenwich 

culmina una stella con ascensione retta 8h 11m 58s, dire che orario segna 

l’orologio dell’osservatore in quel dato luogo della Terra. 

 

Soluzione:  

Il tempo siderale in un dato luogo è uguale all’ascensione retta delle stelle che 

si trovano a culminare al meridiano superiore. Quindi in questo luogo della 

Terra il tempo siderale è pari a 11h 12m 13s; a Greenwich il tempo siderale è 

pari a 8h 11m 58s. Notiamo come il luogo dove si trova l’osservatore ha 

longitudine est: infatti è più avanti di Greenwich di circa 3 ore, quindi è più a 

Est di Greenwich. La differenza fra l’ora siderale dell’osservatore e quella a 

Greenwich dà la longitudine del luogo (differenza fra longitudine del luogo e 

longitudine di Greenwich che è 0 perché il suo meridiano è origine delle 

longitudini): 

 

𝜆 =  𝑇𝑆’ − 𝑇𝑆(𝐺𝑊) =  11ℎ 12𝑚 13𝑠 −  8ℎ 11𝑚 58𝑠 =  3ℎ 0𝑚 15𝑠 𝐸 

 

Questo luogo segue il meridiano che ha longitudine 3h E, quindi è in anticipo 

rispetto a esso di appena 15s: pertanto il suo orologio segnerà le ore: 

 

13ℎ 04𝑚 02𝑠 −  15𝑠 =  13ℎ 03𝑚 47𝑠 

 

 

Tempi siderali 
Il tempo siderale di un luogo (𝜑 = 28° 30′45′′𝑆 ;  𝜆 = 90° 23′50′′𝑊 ) è di 

9h 3min 45sec. Quale è il tempo siderale di GW? 

Soluzione:  

Il primo passaggio da fare è trasformare la longitudine del luogo da gradi in 

ore. Quindi: 

15°: 1ℎ = 90° 23′50′′: 𝜆 

𝜆 = 90° 23′50′′ ∙
1ℎ

15° 
= 6ℎ 1min35.33𝑠𝑒𝑐 
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Il tempo siderale del luogo è legato a quello di GW dalla seguente relazione: 

𝑇𝑠 = 𝑇𝐺𝑤 + 𝜆 

Quindi:  

𝑇𝐺𝑤 = 𝑇𝑠 − 𝜆 = 9ℎ 3min  45𝑠𝑒𝑐 − (−6ℎ 1min  35.33 sec  ) = 

= 9ℎ 3min 45 sec+ 6ℎ 1min35.33𝑠𝑒𝑐 = 15ℎ  5min20𝑠𝑒𝑐  
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Il cielo visto dalla Terra e dalla Luna 
 

Distanze stellari 
Due stelle equatoriali hanno parallassi 0”. 022 e 0”. 034; esse hanno AR 

12ℎ13𝑚 e 13ℎ12𝑚 rispettivamente. Quant’è in parsec la loro reciproca 

distanza? 

Soluzione:  

L’angolo fra la direzione con cui si proietta in cielo la prima stella e la 

direzione della seconda stella è pari alla differenza delle ascensioni rette: le 

stelle sono infatti equatoriali, cioè hanno declinazione nulla:  

𝛥𝐴𝑅 = 13ℎ12𝑚 − 12ℎ13𝑚 

Trasformando in gradi: 

∆𝐴𝑅 = 14°. 75 

 

La loro distanza dall’osservatore è, in parsec, pari al reciproco della 

parallasse: 

𝑑1 = (
1

𝑃1
) =

1

0.022
= 45.5𝑝𝑐 

𝑑2 = (
1

𝑃2
) =

1

0.034
= 29.4𝑝𝑐 

 

Il problema chiede in sostanza di calcolare un lato di un triangolo con vertici 

nell’osservatore e nelle due stelle (in particolare il lato con estremi nelle due 

stelle) noti l’angolo opposto a tale lato e gli altri due lati: possiamo quindi 

usare il Teorema di Carnot (o teorema del coseno): 

𝑥 = √𝑑1
2 + 𝑑2

2 − 2𝑑1𝑑2 cos(∆𝐴𝑅) = 18.6 𝑝𝑐 
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Sinodico del Sole 
Sapendo che il periodo siderale di rotazione del Sole all’Equatore è di 25 

giorni, trovare il periodo di rivoluzione sinodica, cioè quello che appare visto 

dalla Terra. 

Soluzione:  

Prendiamo un punto sull’Equatore del Sole: esso si muove con un periodo 

siderale (cioè riferito a una stella lontana) pari, come indicato dalla traccia, a 

25 giorni. Il problema è del tutto analogo al calcolo del tempo sinodico di un 

pianeta interno visto dalla Terra noti i periodi di entrambi i corpi. 

1

𝑆
=

1

𝑇𝑠𝑜𝑙𝑒
−

1

𝑇𝑡𝑒𝑟𝑟𝑎
 

𝑆 =
𝑇𝑡𝑒𝑟𝑟𝑎𝑇𝑠𝑜𝑙𝑒
𝑇𝑡𝑒𝑟𝑟𝑎 − 𝑇𝑠𝑜𝑙𝑒

=
365.25 ∙ 25

365.25 − 25
𝑑 =

9131.25

340.25
𝑑 = 26.84𝑑 

 

 

 

Solo ombre, non penombre 
A quale distanza da uno schermo deve essere posta una sfera di raggio R 

affinché, illuminata dal Sole, non generi ombra ma solo penombra? (il 

diametro apparente del Sole sia 32’.) 

Soluzione:  

Concettualmente il problema è equivalente alla situazione di un’eclisse: 

l’”osservatore” è lo schermo, mentre fra esso e il Sole si frappone un ostacolo. 

Esso, intercettando i raggi solari, genera dietro di sé un cono d’ombra, e, molto 

più ampio di questo, una zona di penombra. Il cono si restringe dalla parte 

opposta del Sole rispetto alla sfera. Se il vertice del cono si trova sullo 

schermo, allora nessun punto dello schermo si troverà in ombra perché il cono 

non interseca lo schermo. In questa configurazione, l’angolo sotto cui viene 

vista la sfera dallo schermo è di 32’, ovvero 0,53°, da cui si ha:   

𝑅

𝑑
= 𝑡𝑎 𝑛 (

0.53

2
) 
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E cioè:  

𝑑 = [1/ 𝑡𝑎𝑛(0.265)]  ∗ 𝑅 = 214.8 𝑅 𝑐𝑖𝑟𝑐𝑎  

La sfera dev’essere posta a una distanza dallo schermo maggiore di 214,8 

volte circa il suo raggio. 

 

 

 

Guarda che Luna! 
Il 29 marzo 2006 si è verificata un’eclisse totale di Sole, visibile dall’Africa 

settentrionale e dal Mediterraneo orientale. Quale fase aveva la luna il 29 

marzo 2007, cioè esattamente un anno dopo? 

Soluzione:  

Le eclissi di Sole si verificano quando la Luna si interpone fra il Sole e la 

Terra, oscurando una fascia sulla superficie del nostro pianeta con il suo cono 

d’ombra: pertanto, la Luna rivolge a noi, in quest’occasione, la sua faccia non 

illuminata dal Sole e pertanto è nuova. Conosciamo inoltre il periodo in cui si 

ripetono le fasi lunari: è il mese sinodico, la cui durata è pari a 29,5306 giorni. 

L’intervallo considerato (un anno, in cui il 2007 non è bisestile), è pari a 365 

giorni. Siccome 365/29.5306 = 12.36, ossia 12 mesi lunari e 11 giorni, se 

ne deduce che l’età della Luna al 29 marzo 2007 era di 11 giorni, quindi essa 

era in una fase intermedia tra primo quarto e Luna piena. 
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Gravitazione e leggi di Keplero 
 

L’alieno Bzzapp 
L’alieno Bzzapp ha appena comprato una navicella in grado di creare nuovi 

pianeti; nel suo girovagare, un giorno incappa nel nostro Sistema Solare; 

decide così di creare con la sua astronave qualche nuovo pianeta. L’amico 

Zorzzp gli dà prima una regola, dicendogli che questi pianeti devono trovarsi 

in una fascia compresa fra 2 U.A. e 7 U.A.; in più, il loro periodo di 

rivoluzione dev’essere pari a un numero intero di anni. Qual è il numero 

massimo di pianeti che Bzzapp potrà creare con la sua navicella 

conformemente alla regola di Zorzzp? 

Soluzione:  

Per la risoluzione del problema è necessaria la Terza legge di Keplero, 

considerando che ci troviamo nel nostro Sistema Solare e che quindi la 

costante di proporzionalità fra cubo del semiasse maggiore e quadrato del 

periodo di rivoluzione per un generico corpo orbitante attorno al Sole, quando 

esprimiamo il semiasse in UA e il periodo in anni, risulta pari a 1.  

𝑇1 = √𝑎1
3 = 2.83 𝑦 

𝑇2 = √𝑎2
3 = 18.52 𝑦 

Come possiamo vedere, i periodi “possibili” sono 3, 4, 5, 6, 7, 8, 9, 10, 11, 

12, 13, 14, 15, 16, 17 e 18 anni: Bzzapp potrà creare ben 16 pianeti! 

 

 

 

Modellini del Sistema solare 
Disponendo come dati noti dei soli periodi di rivoluzione dei pianeti, si indichi 

la lunghezza minima che deve avere un foglio di carta per poter rappresentare 

in scala il Sistema Solare fino a Nettuno, nell’ipotesi di voler rappresentare 

Mercurio a una distanza dal Sole di 1 cm. 
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Soluzione:  

Mercurio ha un periodo di rivoluzione pari a 0.241 anni mentre Nettuno 

164.88 anni: quindi, per la Terza legge di Keplero:  

𝑎𝑀 = √𝑇𝑀
23
= 0.387𝑈𝐴   

𝑎𝑁 = √𝑇𝑁
23
= 30.069 𝑈𝐴 

Con una semplice proporzione ricaviamo la lunghezza del foglio di carta: 

𝑎𝑀: 𝑎𝑁 = 1: 𝑥  

𝑥 =
30.069

0.387
𝑐𝑚 ≈ 77.7 𝑐𝑚 

 

 

 

Questioni di una certa gravità 
A quale distanza dalla superficie della Terra, per un’astronave che viaggia 

verso la Luna, si annulla la risultante delle forze gravitazionali che agiscono 

su di essa? (il rapporto massa della Terra/ massa della Luna è pari a 81.25). 

Soluzione:  

La distanza Terra-Luna è pari a d=384400 km. Quando l’astronave si trova 

fra il nostro pianeta e il suo satellite, le due forze di natura gravitazionale che 

agiscono su di essa sono la forza di attrazione della Terra e quella della Luna, 

agenti nella stessa direzione ma aventi verso opposto. Chiamando x la 

distanza che separa la navicella dal centro della Terra, possiamo esprimere in 

funzione di x la distanza che separa la navicella dalla Luna, essendo essa pari 

a d-x. Eguagliamo le due forze di attrazione gravitazionale per trovare x. 
 

𝐺𝑀𝑇𝑚

𝑥2
=

𝐺𝑀𝐿𝑚

(𝑑 − 𝑥)2
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Operando le dovute semplificazioni (G e la massa dell’astronave) e dividendo: 

𝑥

𝑑 − 𝑥
= √

𝑀𝑇

𝑀𝐿
= √81.25 = 9.01 

𝑥 =
9.01𝑑

10.01
= 0.90 ∗ 384400𝑘𝑚 = 346013𝑘𝑚 

Il problema viene considerato parzialmente corretto se ci si ferma a questo 

punto, perché esso chiede la distanza dalla superficie terrestre mentre x è 

misurata dal centro della Terra: pertanto la soluzione corretta è:  

𝐷 = 𝑥 − 𝑅 = (346013 − 6378)𝑘𝑚 = 339635𝑘𝑚 

 

 

L’astronomo Qwzzz 
Osservando la stella Canopo con un telescopio potentissimo, l’astronomo 

Qwzzz ha scoperto due pianeti orbitanti attorno a essa, le cui orbite sono 

esattamente perpendicolari alla nostra linea di vista. La distanza massima del 

primo pianeta da Canopo è uguale a 4.7 volte la sua distanza minima, e il suo 

periodo di rivoluzione è pari a 2.7 anni. Il secondo pianeta, avente eccentricità 

pari a 0.324, al periapside è 3 volte più lontano rispetto al primo (quando 

quest’ultimo si trova nella corrispondente posizione). Quanto vale 

l’eccentricità del primo pianeta e il periodo di rivoluzione del secondo? 

Soluzione:  

Chiamiamo 1 il primo pianeta e 2 il secondo: 

𝑑𝑎1
𝑑𝑝1

= 4.7 =
𝑎1(1 + 𝑒1)

𝑎1(1 − 𝑒1)
 

 

1 + 𝑒1
1 − 𝑒1

= 4.7 

 

𝑒1 = 0.649 
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𝑑𝑝2

𝑑𝑝1
=
𝑎2(1 − 𝑒2)

𝑎1(1 − 𝑒1)
= 3 

𝑎2
𝑎1
=
(1 − 𝑒1)𝑑𝑝2
𝑑𝑝1(1 − 𝑒2)

= 3 (
1 − 0.649

1 − 0.324
) = 1.558 

Per la Terza legge di Keplero: 

𝑇2
2 = (

𝑎2
𝑎1
)
3

𝑇1
2 

𝑇2 = 2.7 𝑦√1.558
3 = 5.24 𝑦 

 

 

Il distante Giove  
Calcolare il semiasse maggiore dell’orbita di Giove, in kilometri, sapendo che 

il suo periodo di rivoluzione è 𝑇𝐺 = 374.11 ∙ 10
6 𝑠  

Soluzione: 

𝑇𝐺(𝑎𝑛𝑛𝑖) =
𝑇𝐺(𝑠𝑒𝑐𝑜𝑛𝑑𝑖)

(𝑠𝑒𝑐𝑜𝑛𝑑𝑖 𝑖𝑛 𝑢𝑛 𝑎𝑛𝑛𝑜)
=

374.11 ∙ 106 𝑠

3600 ∙ 24 ∙ 365 ∙
𝑠

𝑎𝑛𝑛𝑜

 

𝑇𝐺 = 11.863 𝑎𝑛𝑛𝑖 

Impostando la terza legge di Keplero e imponendo che 𝐾 =
1 𝑎𝑛𝑛𝑜2

1 𝑈.𝐴.3
       

    

𝑇2

𝑎3
= 𝐾 

 

𝑎𝐺(𝑈. 𝐴. ) = √[𝑇𝐺(𝑎𝑛𝑛𝑖)]
23
= √(11.863 𝑎𝑛𝑛𝑖)2

3
= 5.2 𝑈. 𝐴. 

 

𝑎𝐺 = 777.92 ∙ 10
6 𝑘𝑚 
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Quanto tempo, Marte! 
Calcolare il periodo di rivoluzione di Marte, in giorni, sapendo che il suo 

semiasse maggiore misura 𝑎𝑀 = 227.9 ∙ 10
9 𝑚 .                                                                             

Soluzione: 

𝑎𝑀(𝑈. 𝐴. ) =
𝑎𝑀(𝑚)

149.6 ∙ 109 ∙
𝑚
𝑈. 𝐴.

=
227.9 ∙ 109 𝑚

149.6 ∙ 109 ∙
𝑚
𝑈. 𝐴.

= 1.52 𝑈. 𝐴. 

Impostando la terza legge di Keplero e imponendo che 𝐾 =
1 𝑎𝑛𝑛𝑜2

1 𝑈.𝐴.3
          

𝑇2

𝑎3
= 𝐾 

𝑇𝑀(𝑎𝑛𝑛𝑖) = √[𝑎𝑀(𝑈. 𝐴. )]
3 = √(1.52 𝑈. 𝐴. )3 = 1.87 𝑎𝑛𝑛𝑖 = 684 𝑔𝑖𝑜𝑟𝑛𝑖  

 

 

Veloce o non veloce… 

Approssimando l’orbita di Venere a una circonferenza, calcolare la velocità 

media v del pianeta intorno al Sole sapendo che il suo periodo di rivoluzione 

è 𝑇𝑉 = 19.41 ∙ 10
6 𝑠            

Soluzione: 

𝑇𝑉(𝑎𝑛𝑛𝑖) =
𝑇𝑉(𝑠𝑒𝑐𝑜𝑛𝑑𝑖)

(𝑠𝑒𝑐𝑜𝑛𝑑𝑖 𝑖𝑛 𝑢𝑛 𝑎𝑛𝑛𝑜)
=

19,41 ∙ 106 𝑠

3600 ∙ 24 ∙ 365 ∙
𝑠

𝑎𝑛𝑛𝑜

 

𝑇𝑉 = 0,61 𝑎𝑛𝑛𝑖  

Impostando la terza legge di Keplero e imponendo che 𝐾 =
1 𝑎𝑛𝑛𝑜2

1 𝑈.𝐴.3
      

𝑎𝑉(𝑈. 𝐴. ) = √[𝑇𝑉(𝑎𝑛𝑛𝑖)]
23
= √(0.61 𝑎𝑛𝑛𝑖)2

3
= 0.72 𝑈. 𝐴. 

𝑎𝑉 = 107.6 ∙ 10
6 𝑘𝑚 

𝑣 =
2𝜋𝑎𝑉
𝑇𝑉

=
2𝜋 ∙ 107.6 ∙ 106 𝑘𝑚

19.41 ∙ 106 𝑠
= 34.83 

𝑘𝑚

𝑠
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Un pianeta “cadente” 
Un pianeta sta cadendo sulla sua stella seguendo una traiettoria rettilinea: se 

si conosce l’altezza di caduta, h, si determini il tempo di caduta t. 

 

Soluzione: 

Per risolvere questo problema si potrebbe erroneamente pensare di applicare 

le leggi del moto rettilineo uniformemente accelerato (come nel caso di una 

penna che cade dalla scrivania).  

Consideriamo però un corpo (di massa m) che si trova a una certa altezza dal 

suolo: la sua forza peso equivale alla forza di attrazione gravitazionale tra il 

corpo e il pianeta (di raggio R e massa M) su cui si trova 

𝑚𝑔 =
𝑚𝑀𝐺

(𝑅 + ℎ)2
     𝑐𝑖𝑜è    𝑔 =

𝐺𝑀

(𝑅 + ℎ)2
 

 

Come possiamo vedere, l’accelerazione di gravità g non si mantiene costante 

al variare dell’altezza, ma varia; noi la assumiamo costante al suolo e pari a 

circa 9,81 m/s^2 solo perché in quel caso Δh≈0!  

 

 

Quindi non possiamo applicare le leggi del moto rettilineo 

uniformemente accelerato a questo problema! Come risolverlo allora? 

 

 

All’inizio di questi appunti abbiamo evidenziato che l’eccentricità di 

un’ellisse indica quanto l’ellisse è “schiacciata”: se dunque l’eccentricità 

tende a 1, la traiettoria tende a un segmento!  

 

Quindi possiamo assumere che il pianeta cada seguendo un’orbita ellittica con 

eccentricità prossima a 1, e dunque semiasse maggiore a pari a h/2 (vedi 

figura): 

 

 

 

 

 

 

 

 

             a          a 

                                h 
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Se conosciamo la massa M della stella, possiamo applicare la III legge di 

Keplero generalizzata:  

 

𝑇2

𝑎3
=
4𝜋2

𝐺𝑀
  

 

𝑇 = √
4𝜋2

𝐺𝑀
𝑎3   

 

𝑇 = √
4𝜋2

𝐺𝑀
(
ℎ

2
)
3

     

 

𝑇 = √
𝜋2

2𝐺𝑀
ℎ3 

 

 

Naturalmente questo è il periodo completo dell’orbita. Il periodo di caduta è 

la metà: 

 

𝑡 =
𝑇

2
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Stelle e magnitudini 
 

Un oggetto strano 
Pochi giorni fa si è registrato un nuovo oggetto che si comporta 

apparentemente come una binaria a eclisse. Tuttavia il periodo non è stabile: 

la magnitudine dell’oggetto è in genere pari a 24.32, ma ogni 7-11 secondi 

sale a 24.52 per 0.2-0.3 secondi. Dopo un’accurata analisi del problema si è 

capito che l’oggetto splendente è costituito dagli occhi di un gruppo di gatti 

assolutamente neri seduti su un piccolo corpo del sistema solare, nero, e con 

gli sguardi rivolti verso il sole. Uno dei gatti batte ogni tanto le palpebre. 

Quanti gatti ci sono? 

Soluzione:  

Sia N il numero di occhi, la cui determinazione è richiesta dal problema. 

Quando il gatto nero del problema chiude gli occhi, il numero di occhi che 

contribuisce alla magnitudine complessiva scende di due unità (N-2). Se 

consideriamo che gli occhi dei gatti sono tutti gli stessi, ciascuno di essi ci 

invia un flusso pari a F. Avendo entrambe le magnitudini corrispondenti alla 

situazione “tutti gli N occhi aperti” (24.32) e “N-2 occhi aperti” (24.52), 

possiamo scrivere la formula di Pogson tenendo conto dei flussi complessivi: 

𝑚𝑚𝑖𝑛 −𝑚𝑚𝑎𝑥 = −2,5𝑙𝑜𝑔 [
𝐹 ∗ (𝑁 − 2)

𝐹 ∗ 𝑁
] 

 

𝑁 − 2

𝑁
= 10

𝑚𝑚𝑎𝑥−𝑚𝑚𝑖𝑛
2,5 = 10−0,08 = 0.832 

 

𝑁 =
2

0.168
≈ 12 𝑜𝑐𝑐ℎ𝑖   

ossia 6 𝑔𝑎𝑡𝑡𝑖 
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La galassia di Andromeda 
La galassia di Andromeda ha una magnitudine apparente integrata 

𝑚𝑣 =  4.40 e appare in cielo come un’ellisse i cui semiassi hanno 

dimensioni angolari di circa 190 arcmin e 60 arcmin. Sapendo che la 

sua distanza è di circa 2.54 milioni di anni luce, calcolare la 

magnitudine assoluta e la magnitudine apparente superficiale media 

della galassia. (Gara Interregionale Categoria Senior, 2018) 

 

Soluzione:  

La distanza della galassia di Andromeda in pc è:  

 

𝑑(𝑝𝑐)  = 2.54  ∗ 106 ∗ 3.262 =  778 ∗ 103 𝑝𝑐 
 

 

La magnitudine assoluta è data dalla relazione:  

 
𝑀𝑣 =  𝑚𝑣 +  5 −  5 𝑙𝑜𝑔 𝑑(𝑝𝑐)  =  −20.1 

 
 

Per calcolare la magnitudine apparente superficiale dobbiamo calcolare 

l’area apparente della galassia:  

 

𝐴 =  𝜋 𝑎 𝑏 =  𝜋 190 ∙  60 = 
 

=  35.8 ∙  103 𝑎𝑟𝑐𝑚𝑖𝑛2  ≅  129 ∙  106 𝑎𝑟𝑐𝑠𝑒𝑐2 

 

 

La magnitudine apparente superficiale (𝑚sup  ) si ottiene dalla 

relazione: 

 

𝑚𝑠𝑢𝑝 =  𝑚𝑣 + 2.5 log𝐴 ≅ 15.8
𝑚𝑎𝑔

𝑎𝑟𝑐𝑚𝑖𝑛2
 ≅  

 

≅  24.7𝑚𝑎𝑔/𝑎𝑟𝑐𝑠𝑒𝑐2 
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Una variabile pulsante 
Si consideri una stella variabile “pulsante” la cui magnitudine assoluta varia 

nell’intervallo: 𝑀1 =  3.25 e 𝑀2 =  2.26, con una temperatura effettiva che 

al massimo di luminosità è 𝑇2 =  5500 𝐾 e al minimo di luminosità è        𝑇1  =

 5000 𝐾. Calcolare quanto varia il raggio della stella tra il minimo e il 

massimo di luminosità. Esprimere il risultato come rapporto tra raggio 

massimo e raggio minimo e come differenza tra i due raggi in km. (Gara 

Interregionale Categoria Senior, 2017) 

Soluzione:  

La luminosità di una stella è definita dalla relazione: 

 

𝐿 = 4 𝜋 𝑅2 𝜎 𝑇4 

 

Per ricavare il rapporto tra i raggi al massimo e minimo di luminosità 

utilizziamo la formula di Pogson:  

𝑀2 − 𝑀1 = − 2.5𝑙𝑜𝑔 (
𝐿2
𝐿1
 ) = − 2.5𝑙𝑜𝑔 {

[4𝜋(𝑅2) 
2𝜎 (𝑇2)

4]

[4𝜋(𝑅1)
2 𝜎 (𝑇1)

4]
} = 

 

= −2.5𝑙𝑜𝑔 ((
𝑅2
𝑅1
)
2

  ∗  (
𝑇2
𝑇1
)
4

) 

 

E quindi:  

 

0.396 =  𝑙𝑜𝑔 ((
𝑅2
𝑅1
)
2

 ∗  (
𝑇2
𝑇1
)
4

) = 𝑙𝑜𝑔 ((
𝑅2
𝑅1
)
2

  ∗  1.464) 

 

Da cui:  

 

0.396 = 2𝑙𝑜𝑔 (
𝑅2
𝑅1
) + 𝑙𝑜𝑔1.464  

 

Ovvero:  

 

0.115 =  𝑙𝑜𝑔 (𝑅2/𝑅1)  
 

E infine: 

 

 (𝑅2/𝑅1) = 1.30  
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Per ottenere la differenza in km, calcoliamo il raggio della stella al massimo 

di luminosità confrontando i suoi dati con una stella di caratteristiche note: il 

Sole. Avremo quindi:  

 

𝑀2 − 𝑀𝑠 = − 2.5𝑙𝑜𝑔 [(
𝑅2
𝑅𝑠
)
2

  ∗   (
𝑇2
𝑇𝑠
)
4

]   

 

E quindi:  

 

1.03 =  2 𝑙𝑜𝑔 𝑅2  −  2 𝑙𝑜𝑔 𝑅𝑠  +  4 𝑙𝑜𝑔 0.9519  
 

Da cui si ricava:  

 

𝑅2 = 2513 ∙  10
3 𝑘𝑚 ≅ 3.61 𝑅𝑠 

 

𝑅1 = 1933 ∙  10
3 𝑘𝑚 ≅ 2.78 𝑅𝑠  

 

 la variazione del raggio in km vale quindi: ΔR = 𝟓𝟖𝟎 ∙  𝟏𝟎𝟑 km 

 

 

Una variabile pulsante 
La supergigante rossa Betelgeuse ha una magnitudine apparente      

𝑚1 = +0.42 e una parallasse 𝜋1 = 0.005”, mentre la supergigante blu 

Rigel ha una magnitudine apparente 𝑚2 = +0.13 e una parallasse   

𝜋2 = 0.004”. Quale delle due stelle è, intrinsecamente, più luminosa? 

Qual è la più lontana? (Gara interregionale, Categoria Senior, 2015) 

 

Soluzione:  

Affinché si possa determinare quale delle due stelle sia più luminosa 

intrinsecamente, è necessario ricorrere al calcolo delle magnitudini 

assolute delle due stelle: possiamo calcolare la magnitudine assoluta di 

una stella conoscendo la magnitudine apparente della stessa e la sua 

parallasse tramite la relazione: 

 

𝑀 = 𝑚+ 5 + 5𝑙𝑜𝑔𝜋   
 

Ove la parallasse è espressa in arcosecondi. 
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Nel caso nostro: 

 

𝑀1 = 𝑚1 + 5 + 5𝑙𝑜𝑔𝜋1 = +0.42 + 5 + 5𝑙𝑜𝑔0.005 = 

= −6.08 (𝐵𝑒𝑡𝑒𝑙𝑔𝑒𝑢𝑠𝑒) 

 

𝑀2 = 𝑚2 + 5 + 5𝑙𝑜𝑔𝜋2 = +0.13 + 5 + 5𝑙𝑜𝑔0.004 = −6.87 (𝑅𝑖𝑔𝑒𝑙) 

 

Essendo la magnitudine assoluta di Rigel minore di quella di Betelgeuse, 

allora Rigel è intrinsecamente più luminosa di Betelgeuse. Possiamo già da 

questo risultato comprendere quale stella sia più distante delle due: infatti 

Rigel è sia apparentemente sia assolutamente più luminosa di Betelgeuse, 

quindi è necessario che essa sia più distante di Betelgeuse affinché ciò si 

verifichi.  A riprova di ciò, la parallasse di Rigel è minore di quella di 

Betelgeuse, essendo essa più lontana. La distanza di Rigel in parsec è: 

1

𝜋2
= 250 𝑝𝑐  

Mentre quella di Betelgeuse è: 

1

𝜋1
= 200 𝑝𝑐  

Da cui 𝑑2 > 𝑑1. 
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Cosmologia elementare 
 

Una galassia distante 
Un team di scienziati osserva una nuova galassia e ne analizza lo spettro: la 

riga H-alfa dell’idrogeno, che ha in laboratorio una lunghezza d’onda pari a 

6562,81 Å, ha nello spettro della galassia una lunghezza d’onda di 6569,33 

Å. Si determini la distanza della galassia.  

Soluzione:  

Per prima cosa calcoliamo il redshift della galassia: 

𝑧 =
∆𝜆

𝜆
=
𝜆𝑜𝑠𝑠 − 𝜆𝑙𝑎𝑏

𝜆𝑙𝑎𝑏
=
6569.33 − 6562.81

6562.81
= 9.935 ∗ 10−4 

Applichiamo la legge di Hubble-Lemaître: 

𝑐𝑧 = 𝐻0𝑑 

𝑑 =
𝑐𝑧

𝐻0
= 299792.458

𝑘𝑚

𝑠
∗
9.935 ∗ 10−4

71.9
= 4.14 𝑀𝑝𝑐 

 

 

Alla ricerca della costante – Problema IAO 2018 
Osservando l’esplosione di una supernova in una lontana galassia, due 

scienziati notano che la riga H-beta dell’idrogeno osservata nello spettro, ha 

esattamente la stessa lunghezza d’onda della riga H-alfa osservata in 

laboratorio. Tuttavia i due scienziati usano valori diversi per la costante di 

Hubble. Usando valori che differiscono di 𝛥𝐻 = 𝐻2 −𝐻1 = 14
𝑘𝑚

𝑠∗𝑀𝑝𝑐
, 

ottengono valori diversi per la magnitudine assoluta della supernova al 

massimo: 𝑀1 = −19.02 e 𝑀2 = −18.64. Trovare quanto valgono, per 

ciascuno dei due scienziati, il redshift e la distanza della galassia. (XXIII 

International Astronomy Olympiad – Colombo, Sri Lanka, Theoretical 

Round, Group β, Exercise 1) 

Soluzione:  

Il redshift misurato dai due scienziati è lo stesso per entrambi: esso infatti 

dipende dalle lunghezze d’onda osservate, che, secondo quanto affermato 

nella traccia, sono le stesse per entrambi gli scienziati. La lunghezza d’onda 
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della riga H-alfa è pari a 6563 Å, mentre la lunghezza d’onda della riga H-

beta è pari a 4861 Å. Il redshift, per definizione, è dunque pari a: 

𝑧 =
𝜆𝐻−𝑎𝑙𝑓𝑎−𝜆𝐻−𝑏𝑒𝑡𝑎

𝜆𝐻−𝑏𝑒𝑡𝑎
= 0.35 

Conoscendo la relazione nota come “modulo di distanza” (relazione fra mag. 

apparente e mag. assoluta), possiamo scrivere: 

𝑀1 = 𝑚1 + 5 − 5𝑙𝑜𝑔𝑑1 

𝑀2 = 𝑚2 + 5 − 5𝑙𝑜𝑔𝑑2 

Ma le due magnitudini apparenti dell’oggetto debbono necessariamente 

coincidere, dal momento che esse sono dati puramente osservativi (non 

derivano, cioè, da elaborazioni di dati precedenti): possiamo quindi sottrarre 

membro a membro le due relazioni precedenti semplificando le due 

magnitudini apparenti: 

𝑀1 −𝑀2 = 5𝑙𝑜𝑔 (
𝑑2
𝑑1
) →

𝑑2
𝑑1
= 10

𝑀1−𝑀2
5 = 0.839 

Possiamo scrivere il seguente sistema: 

{
𝑑2 = 0.839𝑑1
H2 − H1 = 14 

   {

𝑐𝑧

𝐻2
= 0.839

𝑐𝑧

𝐻1
H2 −H1 = 14

  {
𝐻2 = 1.19𝐻1
𝐻2 −𝐻1 = 14

  

{
 
 

 
 𝐻1 = 73.68

𝑘𝑚

𝑠 ∗ 𝑀𝑝𝑐

𝐻2 = 87.68
𝑘𝑚

𝑠 ∗ 𝑀𝑝𝑐
 

 

 

Da cui, finalmente: 

𝑑1 =
𝑐𝑧

𝐻1
= 299792.458 ∗

0.35

76.68
= 1368.4 𝑀𝑝𝑐 

 

𝑑2 =
𝑐𝑧

𝐻2
= 299792.458 ∗ 0.53/87.68 = 1196.7 𝑀𝑝𝑐 
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Miscellanea 
 

Massa di una galassia 
Una galassia è composta da stelle tutte simili al nostro Sole. Essa mostra uno 

spostamento verso il rosso della riga Hα (𝜆 = 6562.81 Å) di ampiezza pari a 

𝛥𝜆 =  1.5 Å. Essa risulta inclinata rispetto alla perpendicolare alla linea di 

vista di un angolo di 30° e si sa che il suo raggio è pari a 37000 anni luce. Nel 

cielo appare come un oggetto di magnitudine superficiale                           

𝑚𝑠𝑢𝑝 =  24.78 𝑚𝑎𝑔/ arcsec2  . Quanto vale la massa della galassia? 

Soluzione:  

Ci viene fornita dalla traccia la magnitudine superficiale della galassia vista 

dalla Terra: essa indica la magnitudine di una “porzione” della galassia di 

superficie pari a 1 arcsec2. Di conseguenza, la magnitudine complessiva della 

galassia dev’essere legata alla sua superficie angolare: allora dobbiamo 

conoscere le dimensioni angolari della galassia; abbiamo le dimensioni 

angolari, quindi dobbiamo ricavare la distanza della galassia: 

Calcoliamo per prima cosa il redshift z: 

𝑧 =
∆𝜆

𝜆
=

1.5

6562.81
= 2.29 ∙ 10−4 

Con la legge di Hubble-Lemaître ricaviamo la distanza: 

𝑐𝑧 = 𝐻0𝑑 

 

𝑑 =
𝑐𝑧

𝐻𝑜
=
3.00 ∙ 105 ∙ 2.29 ∙ 10−4

71.9
𝑀𝑝𝑐 = 0.954 𝑀𝑝𝑐 = 

 

=  3.11 ∙ 106𝑎𝑛𝑛𝑖 𝑙𝑢𝑐𝑒 

Adesso possiamo determinare le dimensioni apparenti della galassia perché 

ne conosciamo la distanza: nel cielo essa ci appare come un’ellisse il cui 

semiasse maggiore vale: 

𝑎 = arctan (
𝑅

𝑑
) = arctan (

37000

3.11 ∙ 106
) = 0.682° = 2453.8 𝑎𝑟𝑐𝑠𝑒𝑐 
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Essendo il coseno di 30° uguale a 
√3

2
, il semiasse minore varrà:  

𝑏 = arctan(
𝑅√3

2𝑑
) = arctan (

37000 ∙ 1.73

2 ∙ 3.11 ∙ 106
) = 0.590° = 2122.6 𝑎𝑟𝑐𝑠𝑒𝑐 

Calcoliamo la superficie di questa ellisse: 

𝑆 = 𝜋𝑎𝑏 = 𝜋 ∙ 2453.8 ∙ 2122.6 arcsec2 = 1.63 ∙ 107 arcsec2   

A questo punto ricaviamo la magnitudine integrata apparente: 

𝑚 = 𝑚sup  − 2.5𝑙𝑜𝑔(𝑆) 

𝑚 = 24.78 − 2.5 log(1.63 ∙ 107) = 6,75 

Abbiamo la distanza: troviamo la magnitudine assoluta: 

𝑀 = 𝑚 + 5 − 5𝑙𝑜𝑔𝑑 = 6.75 + 5 − 5𝑙𝑜𝑔(0.954 ∗ 106) = −18.15 

A questo punto troviamo il numero di “soli” contenuti nella galassia grazie 

alla relazione che ci permette di ricavare la magnitudine integrata di un 

oggetto (nel caso sia composto da componenti uguali): 

𝑀 = −2.5 log(𝑁 ∗ 10−0.4𝑀𝑠) 
 

 𝑁 = 10−0.4(𝑀−𝑀𝑆) = 10−0.4(−18.15−4.83) = 

 

= 1.56 ∙ 109𝑠𝑡𝑒𝑙𝑙𝑒 𝑐𝑜𝑚𝑒 𝑖𝑙 𝑆𝑜𝑙𝑒! 

 

Possiamo finalmente trovare la massa della galassia: 

𝑀𝑔 = 1.56 ∙ 109 ∙ 1.99 ∙ 1030𝑘𝑔 = 3.10 ∙ 1039𝑘𝑔 

 

 

 

 

 



Bignamino di Astronomia 

   193 

Carburante stellare 
Una stella di raggio R=705000 km presenta un picco d’emissione alla 

lunghezza d’onda di 542 nm. Se essa è costituita interamente da idrogeno, si 

determini quanti atomi di idrogeno hanno reagito in un secondo nel nucleo 

della stella, nella reazione di fusione termonucleare che produce elio. 

Soluzione:  

Dobbiamo innanzitutto determinare la luminosità della stella, che dipende dal 

quadrato del raggio e dalla quarta potenza della temperatura; disponiamo del 

raggio, ma dobbiamo ricavare la temperatura; notiamo come il problema 

fornisca la lunghezza d’onda del picco d’emissione, che è inversamente 

proporzionale alla temperatura efficace secondo la Legge di Wien: 

𝜆 ∙ 𝑇𝑒𝑓𝑓 = 2.898 𝑚𝑚 𝐾 

𝑇𝑒𝑓𝑓 =
2.898 𝑚𝑚  𝐾

542 ∙ 10−6𝑚𝑚
= 5347 𝐾 

 

Adesso possiamo determinare la luminosità della stella (Legge di Stefan-

Boltzmann): 

𝐿 = 4𝜋𝑅2𝜎(𝑇𝑒𝑓𝑓)
4
= 4𝜋 (7.05 ∙ 108)2 5.67 ∙ 10−8 (5347)4 𝑊 = 

= 2.89 ∙ 1026𝑊 

 

Questa è l’energia che la stella irradia in un secondo, ma da dove deriva? Nel 

nucleo, quattro protoni si fondono per formare un nucleo di elio: il nucleo di 

elio che si forma, però, non ha la stessa massa dei quattro protoni, bensì ha 

una massa lievemente minore. La massa mancante (il difetto di massa) si è 

trasformata in energia secondo la famosa relazione di Einstein  

𝐸 = 𝑚𝑐2 

 

Se E=L, m sarà uguale al difetto di massa complessivo per unità di tempo: 

𝑚 =
𝐿

𝑐2
=
2.89 ∙ 1026𝑊

9 ∙ 1016
𝑚2

𝑠2
 
= 3.21 ∙ 109

𝑘𝑔

𝑠
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Essendo la massa di un nucleo di elio-4 pari a 6.645 ∗ 10−27𝑘𝑔, mentre la 

massa del protone pari a 1.673 ∗ 10−27𝑘𝑔, si ha che la massa di 4 protoni è 

6.692 ∗ 10−27𝑘𝑔 e quindi il difetto di massa per ogni reazione è: 

 𝛥𝑚 =  0.047 ∗ 10−27 𝑘𝑔 

 

Dividendo questo valore per quello trovato sopra, otteniamo il numero di 

reazioni che avvengono in un secondo nel nucleo della stella: 

𝑁 =
𝑚

∆𝑚
=

3.21 ∙ 109

0.047 ∙ 10−27
𝑟𝑒𝑎𝑧.= 6.83 ∙ 1037𝑟𝑒𝑎𝑧. 

 

A ogni reazione corrispondono quattro atomi di idrogeno, quindi per trovare 

la soluzione ci basta moltiplicare questo valore per 4: 

𝑁𝑡𝑜𝑡 = 4𝑁 = 2.73 ∙ 1038𝑎𝑡𝑜𝑚𝑖(!) 

 

 

Una stella metallica 
Che dimensioni dovrebbe avere una sfera metallica perfettamente riflettente 

per essere visibile come un astro da Terra ad occhio nudo, quando essa si trova 

in opposizione al Sole? (Questa sfera è posta in orbita circolare attorno alla 

Terra con un periodo 𝑇 = 2.766 𝑜𝑟𝑒). 

Soluzione:  

Innanzitutto ci serve conoscere il raggio orbitale della sfera, perciò 

applichiamo la Terza Legge di Keplero generalizzata: 

𝑇2

𝑎3
=
4𝜋2

𝐺𝑀
  

 

𝑎 = √
𝐺𝑀𝑇2

4𝜋2

3

= √
6.67 ∙ 10−11 ∙ 5.97 ∙ 1024 ∙ 9.92 ∙ 107

4(3.14)2

3

 

 

𝑎 = 10005𝑘𝑚 
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Sia Fs il flusso solare: esso investe la sfera e la quantità di energia intercettata 

in un secondo (Lint) è direttamente proporzionale alla sezione della sfera: 

𝐿𝑖𝑛𝑡 = 𝐹𝑠  ∙ 𝜋𝑅
2 

La luce viene interamente riflessa, quindi  

𝐿𝑟𝑖𝑓 = 𝐿𝑖𝑛𝑡 = 𝐹𝑠 ∙ 𝜋𝑅
2 

Questa luminosità viene riflessa in tutte le direzioni, quindi tutti i punti che si 

trovano alla medesima distanza dalla sfera riceveranno lo stesso flusso pari a: 

𝐹 =
𝐹𝑠 ∙ 𝜋𝑅

2

4𝜋𝑑2
=
𝐹𝑠 ∙ 𝑅

2

4𝑑2
 

In particolare, per una località posta sulla Terra:  

𝐹 =
𝐹𝑠 ∙ 𝑅

2

4(𝑎 − 𝑅𝑇)
2
= 

𝐹𝑠 ∙ 𝑅
2

4(107 − 6.378 ∙ 106)2
= 1.906 ∙ 10−14𝐹𝑠 𝑅

2 

Applichiamo la formula di Pogson comparando la sfera col Sole e tenendo 

presente che la magnitudine della sfera dev’essere uguale a 6 (l’oggetto è 

appena visibile ad occhio nudo): 

𝑚 −𝑚𝑠 = −2,5 log (
𝐹

𝐹𝑠
) 

 

 6 + 26.74 = −2.5 log(1.906 ∙ 10−14𝑅2) 
 

1.906 ∙ 10−14𝑅2 = 10−13.1 

𝑅 = √
10−13.1

1.906 ∙ 10−14
𝑚 = 2.04 𝑚 

Pertanto la sfera deve avere un diametro di 4.08 metri. 

 

N.B.: Nello svolgimento del problema si è usato lo stesso valore del flusso 

solare per la Terra e per la sfera; in realtà ciò è un’approssimazione, perché le 

distanze Terra-Sole e Sole-sfera sono diverse. Essendo però il semiasse 

dell’orbita della sfera trascurabile rispetto al semiasse della Terra, allora i due 

flussi sono assai simili. 
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Un quasar doppio 
È stato osservato un quasar doppio che si trova a grandissima distanza dalla 

Terra. La particolarità di questo quasar è il moto di allontanamento delle due 

componenti 𝑄1 e 𝑄2. In particolare, 𝑄1 si allontana da 𝑄2 spostandosi, come 

riportato in figura, dal punto A al punto B, con velocità relativistica “v” pari 

al 75% della velocità della luce. Calcolare l’intervallo 

di tempo Δt impiegato dal componente 𝑄1 a 

raggiungere il punto B e il corrispondente intervallo 

di tempo Δt’ misurato dagli astronomi sulla Terra 

(che giace sullo stesso piano della figura). Sulla base 

del risultato ottenuto, di fronte a quale sconvolgente 

conclusione si sono trovati gli astronomi, prima di 

riuscire a spiegare correttamente il fenomeno?  

(Finale Nazionale 2015 Categoria Junior) 

 

Soluzione:  

Il tratto AB è l’ipotenusa del triangolo rettangolo ABA’ (vedi figura), quindi 

esso vale (Teorema di Pitagora). 

 

𝐴𝐵 = √𝐴𝐴′2 + 𝐴′𝐵2 = √9 + 16 = 5𝑎. 𝑙. 
 

Esso viene quindi percorso nel tempo: 

 

∆𝑡 =
𝐴𝐵

𝑣
=
5𝑎. 𝑙.

0.75𝑐
= 6.67 𝑎𝑛𝑛𝑖 

 

 Notiamo come non ci sia bisogno di conoscere il valore della velocità della 

luce perché le distanze sono espresse in anni luce. 

Adesso analizziamo il fenomeno come viene visto dalla Terra. Quando Q1 si 

trova in A la luce da esso emessa impiega, per giungere in A’, un tempo pari 

a: 

4 𝑎. 𝑙.

𝑐
= 4 𝑎𝑛𝑛𝑖 

Nel frattempo 𝑄1 si sposta e per arrivare in B impiega 6.67 anni. La luce che 

emette in B non deve più attraversare una distanza di 4 a.l., quindi i due 

segnali luminosi arrivano a una “distanza” temporale:  
 

∆𝑡′ = (6.67 − 4)𝑎𝑛𝑛𝑖 = 2.67 𝑎𝑛𝑛𝑖 
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Il risultato sconvolgente è che, siccome agli astronomi da Terra è sembrato 

che 𝑄1 si spostasse lungo A’B, la sua velocità misurata da Terra risulta pari a: 

𝑣 =
𝐴′𝐵

2.67𝑎𝑛𝑛𝑖
=

3𝑎. 𝑙.

2.67𝑎𝑛𝑛𝑖
= 1.125𝑐 ‼! 

 

Apparentemente il quasar si è spostato con una velocità superiore a quella 

della luce. Non è infatti raro osservare dei moti superluminali (cioè con 

velocità superiore a quella della luce) in oggetti che si muovono con velocità 

relativistiche; questa velocità è, tuttavia, sempre apparente. 

 

 

 

Redshift e velocità radiali 
Se una stella presenta un redshift z pari a 5.55∗10-5, quale sarà il verso e il 

valore della sua velocità radiale? 

 

Soluzione:  

Il redshift è positivo, quindi la stella si allontana da noi. La velocità radiale 

della stella è data da: 

𝑣 = 𝑐𝑧 = 3 ∙ 105 ∙ 5.55 ∙ 105 = 16.7
𝑘𝑚

𝑠
 

 

 

 

Redshift di un ammasso stellare 
La lunghezza d’onda λ’ di una delle righe più evidenti della luce emessa dalle 

galassie di una costellazione è 1.020 volte più grande della corrispondente 

lunghezza d’onda λ di riferimento. Calcolare la velocità con cui l’ammasso si 

sta allontanando dalla Terra e stimare la sua distanza. 

 

Soluzione:  

Il redshift è: 

𝑧 =
∆𝜆

𝜆
=
(1.020 − 1)𝜆

𝜆
= 0.020 
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Pertanto:  

𝑣 = 0.020𝑐 = 6000
𝑘𝑚

𝑠
  

 

E legge di Hubble-Lemaître: 

 

𝑑 =
𝑣

𝐻
=
6000

71.9
= 83.4 𝑀𝑝𝑐 

 

 

 

Distanze di ammassi stellari 
In una galassia, tutti gli ammassi globulari hanno un diametro pari a 50 anni 

luce. Nelle fotografie si misura il diametro angolare di tre di questi ammassi. 

I diametri risultano pari a 8’, 9’, 10’. Calcolare la distanza dei tre ammassi. 

 

Soluzione:  

Le dimensioni reali di un oggetto visto sotto un angolo α alla distanza d sono 

date da: 

𝐷 = 2𝑑 tan (
𝛼

2
) 

Da cui: 

 

𝑑1 =
𝐷

2𝑡𝑎 𝑛 (
𝛼1
2
) 
=

50

2𝑡𝑎 𝑛 (
0.1333
2

)
= 21486 𝑎𝑛𝑛𝑖 𝑙𝑢𝑐𝑒 

 

𝑑2 =
𝐷

2 tan (
𝛼2
2
)
= 19099 𝑎𝑛𝑛𝑖 𝑙𝑢𝑐𝑒 

 

𝑑3 =
𝐷

2 tan (
𝛼3
2 )

= 17189 𝑎𝑛𝑛𝑖 𝑙𝑢𝑐𝑒 
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Ingrandimenti di un telescopio (e non solo!) 
Se si dispone di un telescopio di 30 cm di diametro e lunghezza focale di 2 m, 

quali ingrandimenti saranno forniti da tre oculari di focale 25mm, 10 mm e 

5mm? Se gli oculari hanno un campo apparente di 55°, quale sarà l’angolo di 

campo al telescopio? Calcolare pure la pupilla d’uscita. 
 

Soluzione:  

Calcoliamo l’ingrandimento: 

 

𝐼1 =
𝐹

𝑓
=
2000𝑚𝑚

25𝑚𝑚
= 80𝑥 

 

𝐼2 =
2000

10
= 200𝑥 

 

𝐼3 =
2000

5
= 400𝑥 

 

Il campo del telescopio sarà: 

 

𝐹𝑜𝑉1 =
𝐹𝑜𝑉𝑜𝑐
𝑖

=
55°

80
= 0.69° 

 

𝐹𝑜𝑉2 =
55°

200
= 0.28° 

 

𝐹𝑜𝑉3 =
55°

400
= 0.14° 

 

La pupilla d’uscita: 

 

𝑝1 =
300

80
= 3.75𝑚𝑚  

 

𝑝2 =
300

200
= 1.5𝑚𝑚 

 

𝑝3 =
300

400
= 0.75𝑚𝑚 
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Telescopi e granuli solari 
Calcolare l’apertura minima di un telescopio per poter riconoscere un granulo 

solare ampio 700km.  
 

Soluzione:  

L’estensione angolare di questo granulo è data da: 

 

𝛼 = 2 arctan (
𝐷

2𝑑
) = 2 arctan (

700

2 ∙ 149.6 ∙ 106
) = 0.97" 

 

Quindi, per la formula di Dawes:  

 

𝐷(𝑚𝑚) = 120/𝛼" = 12.4𝑐𝑚  
 

 

 

Telescopi per fotografare 
Per realizzare una fotografia a vasto campo è stato necessario un tempo di 

posa di 13 minuti a f/3 con sensibilità 800 ISO. Determinare il tempo 

necessario per ottenere la stessa foto usando una sensibilità di 1000 ISO ed 

un’apertura relativa di f/4,5. Trascurare le perdite di sensibilità dovute al 

difetto di reciprocità delle pellicole. 
 

Soluzione:  

Il tempo di posa richiesto si ricava dalla formula: 

 

𝑇2 =
𝑓2
2 𝑆1

𝑓1
2  𝑆2

 𝑇1  

 

𝑇 𝑡𝑒𝑚𝑝𝑜, 𝑆 𝑠𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡à, 𝑓 𝑑𝑖𝑎𝑓𝑟𝑎𝑚𝑚𝑎 (𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎) 
 

𝑇2 =
4.52   800

32  1000
 13 = 23.4 𝑚𝑖𝑛 

 

 



Bignamino di Astronomia 

   201 

Telescopi e foto di stelle puntiformi 
Determinare il tempo di posa massimo per ottenere stelle puntiformi senza 

inseguimento siderale con un obiettivo di 50 mm (di focale F) puntato su una 

zona di cielo avente declinazione media 45°. Il formato utilizzato è il 

24x36mm. 
 

Soluzione:  

La formula che permette di ottenere stelle puntiformi è: 

𝑇𝑚𝑎𝑥 =
600

𝐹𝑐𝑜𝑠𝛿
= 17𝑠𝑒𝑐𝑜𝑛𝑑𝑖 

 

 

 

Radiotelescopi 
Un radiotelescopio ha apertura di 75 m. Determinare il limite di diffrazione 

raggiungibile alla frequenza di osservazione di 410 MHz. 

 

Soluzione:  

La lunghezza d’onda è data da: 
 

𝑐 = 𝜆𝜈 
 

𝜆 =
𝑐

𝜈
= 73.2 𝑐𝑚 

 

Il limite di diffrazione si ricava dalla formula di Rayleigh: 
 

𝜗 =
1.22𝜆

𝐷
= 1.22

73.2

7500
= 0.0119 𝑟𝑎𝑑 = 0.68° = 41′ 

 

 

 

Radiotelescopi 2.0 
Un radiotelescopio ha un diametro di 25m. Calcolare il limite di diffrazione 

alla lunghezza d’onda di osservazione di 21 cm. 
 

Soluzione: 

Per la formula di Rayleigh: 
 

𝜗 =
1.22𝜆

𝐷
= 1.22

21

2500
= 0.01𝑟𝑎𝑑 = 0.59° = 35.2′ 
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Questioni di risoluzione 
Un telescopio riflettore ha diametro 1.5 m. Calcolare il suo potere risolutivo 

massimo alla lunghezza d’onda dell’idrogeno ionizzato Hα=656.3nm. 
 

Soluzione:  

Ancora una volta: 
 

𝜗 =
1.22𝜆

𝐷
= 1.22 ∗

656.3 ∗ 10−9

1.5
= 5.3  10−7𝑟𝑎𝑑 = 0.11" 

 

 

 

 

Questioni di risoluzione 
Consideriamo due stelle, la prima (S1) ha magnitudine apparente 𝑚1=11 e si 

trova a una distanza 𝐿1 dalla Terra; la seconda, S2, ha luminosità intrinseca 

identica a S1, ma si trova a una distanza tripla rispetto a S1. Che magnitudine 

apparente ha la stella S2? Se abbiamo a disposizione uno specchio di diametro 

𝐷1 con cui si riesce a vedere a malapena S1, quanto deve essere il diametro 

del secondo telescopio 𝐷2 che permetta di vedere a malapena la stella S2? 
 

Soluzione:  

Siccome la luminosità intrinseca è la stessa ma la distanza della seconda stella 

è tripla, il flusso della seconda stella è uguale a un nono del flusso della prima. 

Quindi, applicando la formula di Pogson: 

 

𝑚1 −𝑚2 = −2.5 log (
𝐹1
2
) = −2.5 log 9 = −2.39 

 

𝑚2 = 11 + 2.39 = 13.39 

 

Infine, poiché per osservare S2 dobbiamo essere in grado di rivelare il flusso 

che è 9 volte minore e che l’area di uno specchio aumenta con il quadrato del 

raggio, il raggio dello specchio 𝐷2  dev’essere 3 volte più grande di quello di 

𝐷1. 
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Magnitudini limite 
Calcolare la magnitudine limite visuale limite raggiungibile con un telescopio 

di diametro 𝐷 = 25𝑐𝑚. 
 

Soluzione:  

Applicando la formula per trovare la magnitudine limite (con il diametro 

espresso in cm) troviamo: 

𝑚 = 6.8 + 5𝑙𝑜𝑔𝐷 = 6.8 + 5𝑙𝑜𝑔25 = 13.8 

 

 

 

 

Magnitudini limite e apertura di un telescopio 
Calcolare l’apertura necessaria per poter osservare stelle fino a una 

magnitudine limite visuale di +16 con un telescopio. 
 

Soluzione:  

Applicando la formula precedente: 

 

𝑚 = 6.8 + 5𝑙𝑜𝑔𝐷 

 

𝐷 = 10
𝑚−6.8
5 = 101.84 = 69.2 𝑐𝑚 

 

 

 

“Pesiamo” una stella 
In un sistema stellare, una stella ruota attorno ad un’altra su un’orbita circolare 

con velocità 45 km/s. il suo periodo di rivoluzione è 300 giorni. Determinare 

il raggio dell'orbita e la massa della stella centrale. 
 

Soluzione:  

La velocità orbitale è data da: 

𝑣 =
2𝜋𝑅

𝑇
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Da cui: 

𝑅 =
𝑣𝑇

2𝜋
=
45000 ∙  2.592 ∙ 107

6.2831
= 1.856 ∙ 1011𝑚 

 

 

Dalla Terza legge di Keplero: 

 

𝑀 =
4𝜋2𝑅3

𝐺𝑇2
= 5.632 ∙ 1030𝑘𝑔 
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SFERA E TRIGONOMETRIA 

SFERICA 
 

Premessa 
 

Nella geometria piana i concetti base 

sono il punto e la retta. Su una sfera, i 

punti sono definiti nel senso usuale. Le 

rette sono definite come cerchi massimi. 

Data una sfera si definisce circonferenza 

massima ogni circonferenza che si 

ottiene intersecando la superficie sferica 

con un piano passante per il centro della 

sfera. L'equatore celeste è un circolo 

massimo mentre i paralleli di 

declinazione non lo sono. L'orizzonte 

astronomico è un circolo massimo 

mentre non lo sono gli almucantarat o 

paralleli di altezza. 

 

 

Elementi della sfera 
 

 

 

 

 

 

 

Superficie sferica 

Si chiama superficie sferica la figura generata da una 

semicirconferenza in una rotazione completa attorno al suo diametro. 

Possiamo anche definirla come luogo geometrico. La superficie sferica è 

il luogo geometrico dei punti dello spazio che hanno distanza dal centro 

pari al raggio. 

 

http://www.vialattea.net/eratostene/index.php?option=com_content&view=article&id=382:orizzonte-astronomico&catid=40:glossario&Itemid=165
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Sfera 

Si chiama sfera la figura generata da un semicerchio di una rotazione 

completa attorno al suo diametro. Definita come luogo geometrico è il 

luogo dei punti dello spazio la cui distanza dal centro è minore o uguale 

al raggio. 

 

Segmento sferico a due basi 

Definiamo segmento sferico a due basi la parte di sfera compresa fra due 

piani paralleli α e β secanti la sfera stessa 

 

Calotta Sferica 

Definiamo calotta sferica ognuna delle due parti in cui una superficie 

sferica viene divisa da un piano secante 𝛼. La calotta è la porzione di 

superficie sferica ottenuta per sezione con il piano α. 

 

Segmento sferico ad una base 

Il segmento sferico ad una base è ognuna delle due parti in cui una sfera 

viene divisa da un piano secante α, il segmento è la porzione di sfera 

compresa tra il piano e la calotta. 

 

Fuso sferico 

La parte di superficie sferica 

limitata da due circonferenze 

massime, di sezione dei semipiani 

α e β con la superficie sferica.  
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Spicchio sferico 
Lo spicchio sferico è il solido delimitato da due piano meridiani passanti per 

uno stesso diametro e dalla posizione di superficie sferica (fuso sferico) a essi 

corrispondente. Presi due punti distinti su 

una sfera, per essi passa una ed una sola 

circonferenza massima. Dati due punti A e 

B, distinti, su una sfera, esiste una ed una 

sola circonferenza massima che li contiene. 

I due punti individuano su questa 

circonferenza due archi, il minore di essi si 

chiama distanza sferica e rappresenta una 

geodetica. La geodetica è la linea che 

realizza, su una data superficie, il minimo 

percorso fra i due punti assegnati. 

 

Nella geometria sferica la circonferenza massima gioca 

lo stesso ruolo della retta nella geometria piana. 

Corda 

Si chiama corda un segmento i cui estremi appartengono alla superficie 

sferica. Si chiama diametro una corda passante per il centro della 

superficie sferica e della sfera. 

 

Zona sferica 

Si chiama zona sferica la parte di superficie sferica compresa fra due 

piani paralleli α e β che intersecano la sfera. Le circonferenze sezioni si 

chiamano basi della zona. L’altezza è la distanza tra i due centri delle 

circonferenze sezioni. 
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La lunghezza di questo arco è 

proporzionale al raggio della sfera e 

all’angolo al centro AOB. Se AOB 

è espresso in radianti: 

 𝑨𝑩 =  𝑶𝑨 𝒙 𝑨Ô𝑩 
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Triangolo sferico 
 

Si definisce triangolo sferico la superficie sulla sfera limitata da tre archi di 

circolo massimo passanti per tre punti detti vertici; tali punti non devono 

appartenere allo stesso circolo massimo e gli archi non devono avere alcun 

punto d'intersezione al di fuori dei vertici.  
 

Lati del triangolo sferico 
 

Sono le lunghezze degli archi AB, BC, CA che limitano la superficie. Tali 

lati sono minori o uguali a 180.  
 

Angoli del triangolo sferico 
Sono gli angoli formati dai tre archi di 

circolo massimo. La somma degli angoli 

(interni) è maggiore di 2 angoli retti e 

minore di 6 angoli retti 

𝟏𝟖𝟎° <  𝜶 + 𝜷 + 𝜸 <  𝟓𝟒𝟎° 

Pertanto, la somma degli angoli è 180° 

solo quando il triangolo è   degenere, 

ovvero quando i vertici del triangolo 

sono situati sullo stesso circolo 

massimo. 

  

La differenza fra la somma dei tre angoli di un triangolo sferico e l’angolo 

piatto, si dice eccesso sferico: 

𝜺 =  𝜶 + 𝜷 + 𝜸 −  𝟏𝟖𝟎° 

 Nel triangolo sferico sussistono relazioni fra le funzioni trigonometriche dei 

lati e degli angoli: tali relazioni sono date dai teoremi di Eulero (teorema del 

coseno per i triangoli sferici       e teoremi dei seni       ), da cui derivano due 

gruppi fondamentali di relazioni che prendono il nome di primo e secondo 

gruppo di Gauss di cui ci occuperemo nella trattazione del triangolo di 

posizione astronomico. L’applicazione dei triangoli sferici assume particolare 

importanza in astronomia in quanto, come abbiamo visto nei sistemi di 

riferimento, sulla sfera celeste si misurano solo distanze angolari. 
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Triangolo di posizione astronomico 
 

Vertici del triangolo  
Il triangolo astronomico o di posizione ha i vertici nell'astro, nello zenit e nel 

polo celeste nord; il terzo vertice potrebbe essere anche l'altro polo, ma per 

convenzione è preferibile usare quello nord in quanto semplifica le regole 

algebriche per il calcolo delle lunghezze dei lati. 

 

Lati del triangolo  
I lati del triangolo hanno lunghezze comprese fra 0° e 180° definite come 

segue: 

• Distanza polare p = 90° - 𝜹 

La distanza che l'astro ha dal 

polo di riferimento (polo 

celeste nord, per 

convenzione). Considerando 

la declinazione 𝛿  positiva se 

a Nord e negativa se Sud; la 

distanza polare è p < 90° nel 

primo caso e p > 90° nel 

secondo.  

 

• Colatitudine c = 90° - 𝝋 

Coincide con la colatitudine, ossia il complemento della latitudine. Si 

ricorda che l'elevazione dell'asse polare è esattamente pari alla 

latitudine del luogo. La precedente convenzione per la declinazione 

può essere adottata anche per la latitudine per cui si ha c < 90° per 

latitudini nord e c > 90° per quelle a sud. 

 

• Distanza zenitale z = 90° - h 

Coincide con la distanza zenitale z, ossia la distanza che l'astro ha 

dallo zenit. Tale distanza è il complemento dell'altezza h (z = 90°-h). 

Se l'astro è nell'emisfero visibile si ha h > 0° e z < 90°, per astri 

nell'emisfero invisibile si ha h < 0° e z > 90°. 
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I tre angoli sono:  

1) Angolo   vertice nello Zenith, compreso tra meridiano e cerchio 

verticale; la sua ampiezza dovrebbe corrispondere all'azimuth, ma in 

questo caso, poichè l'ampiezza degli angoli nei triangoli sferici è 

sempre inferiore a 180°, prende nome di Angolo azimutale Z. 

 

2) Angolo vertice nel Polo Celeste, compreso tra meridiano e cerchio 

orario; la sua ampiezza corrisponderebbe   all'angolo orario, ma in 

questo caso, poiché l'ampiezza degli angoli nei triangoli sferici è 

sempre inferiore a 180°, prende nome di Angolo al Polo P. 

 

3) Angolo con vertice nell’oggetto A  

 

 Per un lato: 

cos(𝑎) = cos(𝑏) cos(𝑐) + sin(𝑏) sin(𝑐) cos (𝐴) 

 

sin(𝑎)

sin(𝐴)
=

sin(𝑏)

sin(𝐵)
=

sin(𝑐)

sin(𝐶)
 

 

Attraverso le seguenti relazioni note come primo e secondo gruppo di Gauss 

è possibile risolvere il triangolo astronomico. 
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Formule del Primo gruppo di Gauss 

{
 𝑠𝑖𝑛 ℎ  =  𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛿  + 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝛿 𝑐𝑜𝑠 𝐻

𝑐𝑜𝑠 ℎ   𝑐𝑜𝑠 𝐴 =   𝑐𝑜𝑠 𝜑  𝑠𝑖𝑛 𝛿 + 𝑠𝑖𝑛 𝜑  𝑐𝑜𝑠 𝛿  𝑐𝑜𝑠 𝐻
𝑐𝑜𝑠 ℎ  𝑠𝑖𝑛 𝐴 = 𝑐𝑜𝑠 𝛿  𝑠𝑖𝑛 𝐻

      

 

Formule del Secondo gruppo di Gauss 

{
𝑠𝑖𝑛 𝛿 =  𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 ℎ −  𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 ℎ 𝑐𝑜𝑠 𝐴
𝑐𝑜𝑠𝛿 𝑐𝑜𝑠𝐻 =  𝑠𝑖𝑛ℎ 𝑐𝑜𝑠𝜑 +  𝑐𝑜𝑠ℎ 𝑠𝑒𝑛𝜑 𝑐𝑜𝑠𝐴

𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝐻 =  𝑐𝑜𝑠ℎ 𝑠𝑖𝑛𝐴

            

Notiamo che nel triangolo di posizione sono contemporaneamente presenti, 

per l'oggetto celeste osservato, le sue coordinate altazimutali (azimuth o 

angolo zenitale e altezza o distanza zenitale) e quelle equatoriali orarie 

(angolo orario o angolo al polo e declinazione o distanza polare). Queste 

formule ci consentono il passaggio da coordinate altazimutali ad equatoriali 

orarie e viceversa. 

Queste ci consentono il passaggio da un sistema altazimutale ad equatoriale 

{
𝑠𝑖𝑛 𝛿 =   𝑠𝑖𝑛 𝜑  𝑐𝑜𝑠 𝑧 − 𝑐𝑜𝑠 𝜑  𝑠𝑖𝑛 𝑧  𝑐𝑜𝑠 𝐴

𝑐𝑜𝑠 𝛿  𝑐𝑜𝑠 𝐻 =   𝑐𝑜𝑠 𝜑  𝑐𝑜𝑠 𝑧 +   𝑠𝑖𝑛 𝜑  𝑠𝑖𝑛 𝑧  𝑐𝑜𝑠 𝐴
𝑐𝑜𝑠 𝛿  𝑠𝑖𝑛 𝐻 =   𝑠𝑖𝑛 𝑧  𝑠𝑖𝑛 𝐴
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Area della superficie della zona sferica 
Anche qui la formula è molto semplice: è la stessa che vale per la calotta 

sferica 

 

  𝑨𝒛𝒐𝒏𝒂𝒔𝒇𝒆𝒓𝒊𝒄𝒂 =  𝟐 𝝅 𝒓 𝒉  

 

Da notare anche qua che nella formula 

compare solamente il raggio r della sfera e 

non intervengono i raggi r1 ed r2 delle 

circonferenze di base della zona sferica. 

.  

Questa formula è facile da dimostrare se consideriamo valida la formula della 

calotta: pensiamo alla zona sferica come differenza fra due calotte sferiche; 

allora basta fare la differenza fra le superfici delle calotte di base r1 e r2; 

Chiamato k il segmento prolungamento da h fino alla superficie sferica 

avremo: 

 

Area calotta con base raggio r1 = 2 π r (h+k) 

Area calotta con base raggio r2 = 2 π r k 

 

Facciamo la differenza: 

𝑨𝒓𝒆𝒂 𝒛𝒐𝒏𝒂 𝒔𝒇𝒆𝒓𝒊𝒄𝒂 =  𝟐 𝝅 𝒓(𝒉 + 𝒌) −  𝟐 𝝅 𝒓𝒌 = 

= 𝟐 𝝅 𝒓𝒉 +  𝟐𝝅 𝒓𝒌 −  𝟐 𝝅 𝒓𝒌 =  𝟐 𝝅 𝒓𝒉 

  

 

Come volevamo 

dimostrare!! 
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Le parti della sfera 
 

Riportiamo in una tabella le caratteristiche delle parti in cui rimane divisa una 

superficie sferica e una sfera di raggio R quando vengono sezionate con 

opportuni piani, indicando anche le formule per il calcolo delle corrispondenti 

superfici e volumi: 
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Esercizi 
 

Calcolo dell’altezza di un oggetto alla culminazione 

superiore e inferiore 
 

Già conosciamo le formule che ci permettono di determinare l’altezza di un 

astro sull’orizzonte nel caso di culminazione superiore ed inferiore: per 

semplicità le riportiamo qui di seguito: 

 

Culminazione 

superiore 

La stella culmina a 

sud dello zenit 

La stella culmina a 

nord dello zenit 

 

ALTEZZA 

 

h= 90° - ϕ + δ 

 

h= 90° + ϕ - δ 

 

 

Proviamo, attraverso le formule contenute nella parte teorica di trigonometria 

sferica, a verificare queste relazioni: 

 

Consideriamo la prima equazione del primo gruppo (vd. Primo Gruppo di 

Gauss):    

 

sin h = sin φ sin δ + cos φ cosδ cos H 

 

Se la stella culmina, vuol dire che essa passa al meridiano (o superiore o 

inferiore a seconda della culminazione). 

 

 

CULMINAZIONE SUPERIORE: 

Quando la Stella passa al meridiano superiore l’angolo orario H è = 0 il 

cos0° =1, per cui si ha:  

 

sin h = sin φ sin δ + cos φ cosδ 

 

Questa equazione si risolve facilmente se si applicano le formule di 

sottrazione del coseno:  

 

cos (α - β) = cosαcosβ + sinαsinβ 

 

La nostra equazione può essere scritta:  

 

sin h = cos (ϕ - δ) 
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L’ α della formula di sottrazione è la latitudine e la β la declinazione. 

Ma:  

sin h=cos (90° –h) 

Ed allora:  

 

cos (90°-h) = cos (ϕ - δ) 

 

Questa è una equazione elementare in coseno che ha per soluzioni: 

 

𝟗𝟎° − 𝒉 =  ± (𝝓 −  𝜹) 
 

    90° − ℎ =  +  ( 𝜙 −   𝛿)   
 ℎ =  90° −   𝜙 +  𝛿      

 

   90° − ℎ =  − ( 𝜙 −   𝛿)   
ℎ =  90° +   𝜙 −   𝛿     

(Le relazioni sono due perché ognuna vale per un emisfero) 

 

 

 

CULMINAZIONE INFERIORE: 

Anche qui sappiamo che: 

 

𝒉 =  𝝓 +  𝜹 −  𝟗𝟎° 
 

𝒔𝒊𝒏 𝒉 =  𝒔𝒊𝒏 𝝋 𝒔𝒊𝒏 𝜹 +  𝒄𝒐𝒔 𝝋 𝒄𝒐𝒔𝜹 𝒄𝒐𝒔 𝑯 

 

Alla culminazione inferiore l’angolo orario è 12ℎ quindi 180°: 

 

𝑐𝑜𝑠 180° =  −1 

 

𝒔𝒊𝒏 𝒉 =  𝒔𝒊𝒏 𝝋 𝒔𝒊𝒏 𝜹 −  𝒄𝒐𝒔 𝝋 𝒄𝒐𝒔𝜹 

Non possiamo applicare come prima a formula di addizione del coseno! E 

quindi la riscriviamo: 

 

𝒔𝒊𝒏 𝒉 =  − (− 𝒔𝒊𝒏 𝝋 𝒔𝒊𝒏 𝜹 +  𝒄𝒐𝒔 𝝋 𝒄𝒐𝒔𝜹 ) 
 

Ricordando che:  

 

𝑐𝑜𝑠 ( 𝛼 +  𝛽)  =  𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽 −  𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽  
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Ed essendo: 

 

𝑠𝑖𝑛ℎ =  𝑐𝑜𝑠(90° − ℎ) 
 

Possiamo scrivere:  

 

𝑐𝑜𝑠 (90° − ℎ)  =  − 𝑐𝑜𝑠( 𝜙 +   𝛿)   
 

Essendo: 

 

 𝑐𝑜𝑠𝛼 =  − 𝑐𝑜𝑠(180° − 𝛼)  
 

Allora: 

 

𝒄𝒐𝒔 (𝟗𝟎° − 𝒉)  =   𝒄𝒐𝒔( 𝟏𝟖𝟎° −  𝝓 −   𝜹) 
 

𝟗𝟎° − 𝒉 =    𝟏𝟖𝟎° −  𝝓 −   𝜹    
 

𝒉 =  𝝓 +   𝜹 −  𝟗𝟎° 
 

N.B.: Essendo il coseno di due angoli dello stesso valore assoluto ma di segno 

opposto uguale, come fatto sopra anche la soluzione col segno negativo va 

presa: quindi si ottengono anche qui due formule, che, come sopra, si 

riferiscono ciascuna a un emisfero. 
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Calcolare l’espressione che consente di determinare il 

sorgere e il tramontare di un astro 

Successivamente, determinare la differenza delle ore di luce ai solstizi a 

Reggio Calabria – Latitudine φ=38°6’ Nord.                                                                                          

Per rispondere alla prima domanda dobbiamo determinare l’angolo orario: 

applichiamo il (vd. teoria) Primo Gruppo di Gauss:              

𝒔𝒊𝒏 𝒉 =  𝒔𝒊𝒏 𝝋 𝒔𝒊𝒏 𝜹  +  𝒄𝒐𝒔 𝝋 𝒄𝒐𝒔 𝑯 𝒄𝒐𝒔 𝜹 

Isoliamo il 𝑐𝑜𝑠𝐻. Si trova: 

𝑐𝑜𝑠𝐻 =   
𝑠𝑖𝑛ℎ − 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝛿
 

E scriviamo ancora: 

𝑐𝑜𝑠𝐻 =  
𝑠𝑖𝑛 ℎ

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝛿
  −   

𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝛿

𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 𝛿
  

Ed ancora: 

  𝑐𝑜𝑠𝐻 =  
sin h

cos φ  cos δ
 −  𝑡𝑎𝑛𝜑 𝑡𝑎𝑛𝛿   

Essendo tanα=senα/cosα. 

Al momento del sorgere dell’astro h= 0, quindi: 

 

𝑐𝑜𝑠𝐻 =  − 𝑡𝑎𝑛𝜑 𝑡𝑎𝑛𝛿 

 

Poiché sin0°=0 

 

Se è nota l’ascensione retta possiamo calcolare il tempo siderale:  

 

𝑇𝑠   =  𝐻 + 𝛼 𝑐𝑜𝑛 𝐻 = cos−1  (𝜃
sin h

cos φ  cos δ
 −  𝑡𝑎𝑛𝜑 𝑡𝑎𝑛𝛿 ) 
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Se conosciamo il valore del tempo siderale in una determinata ora di un 

determinato giorno, possiamo anche trovare l’istante di tempo che segna il 

nostro orologio per il sorgere del Sole (per questi calcoli si vedano i problemi 

precedenti sul tempo): 

 

𝒄 =   𝐻 + 𝛼  
 

Una volta trovata l’espressione dell’angolo orario, la seconda domanda si 

risolve facilmente tenendo conto che l’angolo orario adesso è 
𝐻

2
 . 

𝑐𝑜𝑠 
𝐻

2
 =  − 𝑡𝑎𝑛 𝜑 ∗  𝑡𝑎𝑛 𝛿 

Il Sole ai solstizi ha una declinazione 𝛿 = +23°27’ (21 giugno, solstizio 

d’estate) e 𝛿 = −23°27’ (21 dicembre, solstizio d’inverno).  

Si trova che:   

𝑐𝑜𝑠 
𝐻

2
 =  −0.784 ∗  0.433 =  −0.34 

Perciò: 

 𝐻 = 2 cos−1(−0.34) = 219°46’ = 14 𝑜𝑟𝑒 39 𝑚𝑖𝑛𝑢𝑡𝑖  

(𝑑ì 𝑝𝑖ù 𝑙𝑢𝑛𝑔𝑜 𝑑𝑒𝑙𝑙’𝑎𝑛𝑛𝑜) 

Mentre il 21 dicembre: 

𝑐𝑜𝑠 
𝐻

2
 =  (−0.784) ∗  (−0.433)  =  0.34 

dal quale si ricava che: 

𝐻 = cos−1(0.34) = 140°15’ =  9 𝑜𝑟𝑒 21 𝑚𝑖𝑛𝑢𝑡𝑖 

(𝑑ì 𝑝𝑖ù 𝑐𝑜𝑟𝑡𝑜 𝑑𝑒𝑙𝑙’𝑎𝑛𝑛𝑜) 

La differenza di ore è ∆𝐻 = 14ℎ 39𝑚 − 9ℎ 21𝑚 =  5 𝑜𝑟𝑒 18 minuti tra 

inverno ed estate.  
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Calcolare l’altezza, l’ora e l’azimut 

In un certo giorno, in cui è in vigore l’ora legale, in una città, posta alla 

longitudine di 𝜆 = 10° 52’ 59” E, e latitudine  = 44° 38’ 45” N  il Sole ha 

una declinazione  = 10° 59’ 04”.Considerando trascurabile la 

declinazione del Sole durante l’arco della giornata,  

Calcolare: 

1. l’altezza massima raggiunta dal Sole in quella località e l’ora del 

transito in meridiano; 

2. l’ora in cui, in tale giorno, il sole sorge e tramonta in quella Città e 

l’arco diurno; 

3. l’azimut del sole nei momenti in cui sorge e tramonta. 

Il Sole raggiunge la massima altezza hC sull’orizzonte (culmina) quando 

transita per il meridiano locale dell’osservatore. Nel caso specifico   avremo:  

ℎ𝐶  =  90° − ( −  ) =  90° −   +   = 

=  90° −  44°. 64583333 +  10°. 98444444 =  56°. 33861111 

L’altezza massima del Sole, nel momento in cui transita al meridiano è: 

ℎ𝐶  =   56°. 33861111 =  56° 20’ 19” 

Indichiamo adesso con 𝜆 la longitudine espressa in ore e con T la differenza 

in ore del meridiano locale rispetto a GMT. Nel nostro caso essendo in vigore   

l’ora legale, sarà   T = 2h.  Le 12h locali corrispondono dunque a: 

𝑼𝑻 =  12ℎ −  𝜆 

Per cui, l’ora locale del transito in meridiano del sole sarà (scrivendo la 

longitudine in notazione decimale): 

𝑻𝑪  =  12ℎ −  𝜆 +   𝑻 =  12
ℎ −  

10°.  8830555556

15°
+  2ℎ  =  

= 2ℎ −  0.725537036ℎ +  2ℎ =  13.27446296 ℎ 
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Il Sole culmina alle ore locali:  

𝑻𝑪  =  13ℎ 16𝑚 28𝑠. 1 

I due eventi del sorgere e tramontare si verificano quando il sole interseca 

l’orizzonte celeste dell’osservatore, e quindi la sua altezza h è nulla. In questo 

caso, è possibile determinare i tempi (gli angoli orari HS e HT) e le direzioni 

(l’azimut AS e AT) delle due posizioni del sole sull’orizzonte e l’arco diurno:  

 𝑇 =  𝐻𝑇  −  𝐻𝑆  

Che ci dà la durata della permanenza del Sole. 

Applichiamo le formule del Primo Gruppo di Gauss al triangolo sferico 

precedentemente definito rispetto al lato “zenit – sole” ed all’angolo al vertice 

con lo zenit.  

𝑠𝑖𝑛 𝒉 =  𝑠𝑖𝑛  𝑠𝑖𝑛  +  𝑐𝑜𝑠  𝑐𝑜𝑠  𝑐𝑜𝑠 𝑯 

𝑐𝑜𝑠 𝒉 𝑠𝑖𝑛 𝑨 =  − 𝑐𝑜𝑠  𝑠𝑖𝑛 𝑯 

𝑐𝑜𝑠 𝒉 𝑐𝑜𝑠 𝑨 =  𝑐𝑜𝑠  𝑠𝑖𝑛  −  𝑠𝑖𝑛  𝑐𝑜𝑠  𝑐𝑜𝑠 𝑯 

Quando il sole sorge e/o tramonta, si ha h = 0 e quindi sin h = 0.  

Dalla prima relazione precedentemente scritta segue dunque:  

𝑐𝑜𝑠 𝑯 =  − 𝑡𝑎𝑛   𝑡𝑎𝑛   

Dai dati del problema si ha:  

 =  44° 38’ 45” 𝑁 =  44°. 64583333 

   =  10° 59’ 04”. 1 =  10°. 98444444  

Segue:  

cos𝑯 = − tan(44°. 64583333) tan(10°. 98444444) = 

= − 0.191713689 
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 𝑯 = cos−1   (− 0.191713689)  =  101°. 0528101 =  ± 6ℎ. 736854006 

L’angolo orario H è negativo al sorgere perché deve arrivare in meridiano, e 

positivo al tramonto perché ha superato il meridiano. Sarà dunque:  

𝑯𝑺  =  − 6.736854006  ℎ  

𝑯𝑻  =  6.736854006 ℎ 

Il Sole sorgerà dunque alle ore:  

𝑻𝑺  =  𝑻𝑪  + 𝑯𝑺  =  13.27446296 ℎ −  6.736854006 ℎ = 

=  6.537608954 ℎ =  6ℎ 32𝑚 15𝑠. 4 

Lo stesso giorno il Sole tramonterà alle ore:  

𝑻𝑻  =  𝑻𝑪  +  𝑯𝑻  =  13.27446296 ℎ +  6.736854006 ℎ = 

=  20.01131697 ℎ =  20ℎ 00𝑚 40𝑠. 7  

L’intervallo temporale durante il quale il sole resterà sopra l’orizzonte sarà:  

 𝑻 =  𝑯𝑻  − 𝑯𝑺  =  6.736854006 ℎ +  6.736854006 ℎ = 

=  13.47370802 ℎ =  13ℎ 28𝑚 25𝑠. 4 

Per ricavare l’azimut del Sole nei momenti in cui sorge e tramonta, utilizziamo 

la 3ª delle formule di Gauss:  

𝑐𝑜𝑠 𝒉 𝑠𝑖𝑛 𝑨 =  − 𝑐𝑜𝑠  𝑠𝑖𝑛 𝑯 

Nel momento in cui il sole sorge e tramonta si ha h = 0 e quindi cos h = 1, per 

cui si ha, rispetto al punto Nord:  

sin𝑨𝑺 = − cos  sin𝑯𝑺 =  

= − cos(10°. 98444444 ) sin(−6.736854006 ℎ ∗  15) = 

=  0.963469686 
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 𝑨𝑺  = sin
−1   (0.963469686)  =  74°. 46556891 =  74° 27’ 56”. 1 

 

 

sin𝑨𝑻 = − cos  sin𝑯𝑻 = 

 =  − cos(10°. 98444444 ) sin(6.736854006 ℎ ∗  15) = 

 =  −0.963469686  

 

 

𝑨𝑻 = sin−1   (−0.963469686) =  − 74°. 46556891 = 

 =  (360° −  74°. 46556891)  =  285°. 5344311 =  285° 32’ 4” 
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DISTANZA tra DUE STELLE 
 

Regolo ha coordinate 𝐻 = 27𝑚 4𝑠 e declinazione 11° 52′5". Denebola ha 

coordinate 𝐻 = 22ℎ 46𝑚 36𝑠 e declinazione 14° 27′33". Si determini la 

loro distanza angolare. 

Per calcolare la loro distanza consideriamo il triangolo sferico BPA. Dalla 

figura si evince che: 

 

𝑃𝐵 = 90° − 𝛿1 

𝑃𝐴 = 90° − 𝛿2 

L’angolo al polo: 

𝑃 = 𝐻2 −𝐻1 

Applichiamo il teorema del coseno o di Eulero: 

𝑐𝑜𝑠𝐴𝐵 = 𝑐𝑜𝑠𝑃𝐵𝑐𝑜𝑠𝑃𝐴 + 𝑠𝑖𝑛𝑃𝐵 𝑠𝑖𝑛𝑃𝐴 𝑐𝑜𝑠𝑃 

Sostituendo: 

𝑐𝑜𝑠𝛼 = cos(90° − 𝛿1) cos(90° − 𝛿2) + sin(90° − 𝛿1) sin(90° − 𝛿2) 𝑐𝑜𝑠𝑃 

𝑐𝑜𝑠𝛼 = 𝑠𝑖𝑛𝛿1 𝑠𝑖𝑛𝛿2 + 𝑐𝑜𝑠𝛿1𝑐𝑜𝑠𝛿2 cos (𝐻2 −𝐻1) 
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E svolgendo i calcoli: 

𝑐𝑜𝑠𝛼 = sin(11.8681) sin(14.4592) + 

+cos(11.8681) cos(14.4592) cos(25.1167) = 0.904 

 

𝛼 = 24.58 
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FORMULARIO 
 

NOTA BENE: 

La presente sezione è concepita 

per aiutare il ripasso finale prima 

della gara. Non devono essere 

usate per sostituire lo studio più 

approfondito degli argomenti! 

 

 

ASTRONOMIA SFERICA 
 

 

TEOREMA dei SENI 

(TRIANGOLI PIANI) 

 

𝑎

sin 𝛼
=

𝑏

sin 𝛽
=

𝑐

sin 𝛾 
= 2𝑅 

 

In un triangolo qualsiasi, il rapporto tra un lato qualsiasi e il seno dell’angolo 

opposto a tale lato si mantiene costante, ed è, in particolare, uguale al doppio 

del raggio della circonferenza circoscrivibile al triangolo. 
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TEOREMA del COSENO o teorema di CARNOT 

(TRIANGOLI PIANI) 

𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos 𝛼 

𝑏2 = 𝑎2 + 𝑐2 − 2𝑎𝑐 cos 𝛽 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛾 
 

In un triangolo qualsiasi, il quadrato di un lato è uguale alla somma dei 

quadrati degli altri due lati diminuita del doppio prodotto di tali due lati e del 

coseno dell’angolo fra essi compreso. 

 

 

 

TEOREMA dei SENI 

(TRIANGOLI SFERICI) 

sin 𝑎

sin 𝛼 
=
sin 𝑏

sin 𝛽
=
sin 𝑐

sin 𝛾
 

 

Un triangolo sferico è la parte di superficie 

sferica delimitata da tre archi di cerchi 

massimi che si intersecano. I lati di tali 

triangoli non sono identificati per la loro 

lunghezza lineare, ma tramite l’angolo 

sotteso da essi rispetto al centro della sfera. 

Il rapporto del seno di un lato qualsiasi di 

tale triangolo e il seno dell’angolo opposto a tale lato si mantiene costante per 

ogni lato scelto. 
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TEOREMA del COSENO 

(TRIANGOLI SFERICI) 

cos 𝑐 = cos 𝑎 cos 𝑏 + sin 𝑎 sin 𝑏 cos 𝛾 

cos 𝑎 = cos 𝑏 cos 𝑐 + sin 𝑏 sin 𝑐 cos 𝛼 

cos 𝑏 = cos 𝑎 cos 𝑐 + sin 𝑎 sin 𝑐 cos 𝛽 
 

In un triangolo sferico, il coseno di un lato è uguale al prodotto dei coseni 

degli altri due più il prodotto dei seni degli altri due e del coseno dell’angolo 

opposto al primo lato. 

 

 

TRIANGOLO PARALLATTICO 

 

Per triangolo parallattico s’intende il 

triangolo sferico sulla volta celeste 

formato dallo zenit Z, dal polo 

celeste P e da una data stella S. 

𝑍𝑃 = 90° − 𝜑 

  𝑃𝑆 = 90° − 𝛿 

 𝑍𝑆 = 𝑧 
 

𝑍𝑃𝑆 = 𝐻                         (𝐻 = 𝑎𝑛𝑔𝑜𝑙𝑜 𝑜𝑟𝑎𝑟𝑖𝑜) 

𝑆𝑍𝑃 = 180° − 𝐴                             (𝐴 = 𝑎𝑧𝑖𝑚𝑢𝑡) 

Attraverso i teoremi sui triangoli sferici, grazie alla costruzione del triangolo 

parallattico è possibile trasformare le coordinate altazimutali in coordinate 

equatoriali orarie/celesti. 
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EQUAZIONE DEL TEMPO 

𝐸𝑇 = 𝑇𝑣 − 𝑇𝑀      𝑜𝑝𝑝𝑢𝑟𝑒     𝐸𝑇 = 𝑇𝑚 − 𝑇𝑣 

(𝑇𝑚 𝑡𝑒𝑚𝑝𝑜 𝑠𝑜𝑙𝑎𝑟𝑒 𝑚𝑒𝑑𝑖𝑜, 𝑇𝑣 𝑡𝑒𝑚𝑝𝑜 𝑠𝑜𝑙𝑎𝑟𝑒 𝑣𝑒𝑟𝑜) 

Il Sole vero (l’astro diurno), a causa della variabilità della velocità di 

rivoluzione terrestre, non si muove sull’Eclittica in maniera uniforme. Il Sole 

medio invece si muove sull’Equatore celeste in maniera uniforme. Ciò 

comporta uno sfasamento tra tempo vero e tempo medio, indicato 

dall’equazione del tempo. (L’impiego di una delle due formule dipende dai 

grafici forniti dall’almanacco o dal problema). 

         

 

 

PRECESSIONE DEGLI EQUINOZI 

𝑇𝑃𝑅𝐸𝐶 ≈ 26 000 𝑎𝑛𝑛𝑖 

Per l’effetto gravitazionale combinato del Sole e della 

Luna sulla Terra, l’asse terrestre compie un moto 

millenario che osservato dal Polo eclitticale Nord 

appare svolgersi in senso orario, facendo sì che l’asse 

descriva un doppio cono. In conseguenza di ciò, il 

punto vernale si muove sull’Equatore celeste in senso 

orario con periodo indicato. Ciò comporta l’anticipo 

progressivo degli Equinozi, muovendosi il punto 

vernale incontro al Sole vero. 
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ABERRAZIONE della LUCE 
 

tan 𝛼  ≈  𝛼 =
𝑣𝑝𝑒𝑟𝑝

𝑐
                

𝛼 =  𝑎𝑏𝑒𝑟𝑟𝑎𝑧𝑖𝑜𝑛𝑒 

𝑣𝑝𝑒𝑟𝑝  =  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑒 𝑑𝑒𝑙𝑙𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑡à  

 𝑡𝑒𝑟𝑟𝑒𝑠𝑡𝑟𝑒 𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑜𝑙𝑎𝑟𝑒  

𝑎𝑙𝑙𝑎 𝑙𝑢𝑐𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑒 

 

Quando i raggi di luce di una stella cadono sulla Terra, la loro direzione di 

provenienza appare lievemente deviata a causa del fatto che il Pianeta ha una 

sua velocità orbitale v. I due vettori velocità si combinano per dare un vettore 

risultante di poco inclinato rispetto alla direzione originale dei raggi. La 

deviazione ha periodicità annuale e semi-ampiezza di 20.5”. 

 

 

 

RIFRAZIONE ATMOSFERICA 
 

𝑎𝑙𝑙′𝑜𝑟𝑖𝑧𝑧𝑜𝑛𝑡𝑒:     ∆ℎ ≈ 35′ 

𝑝𝑒𝑟 0 ≤ 𝑧 ≤ 70°:        ∆ℎ ≈ 58,2" tan 𝑧  

La rifrazione della luce proveniente da un astro dovuta alla presenza 

dell’atmosfera terrestre determina un aumento pari a Δh dell’altezza 

dell’astro, tanto maggiore quanto minore è l’altezza dell’astro. Fino a distanze 

zenitali (z= 90°-h) di 70° è possibile adoperare la seconda relazione. Oltre tale 

valore la rifrazione cresce in maniera piuttosto irregolare, per raggiungere un 

valore di 35’ in prossimità dell’orizzonte. 
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PARALLASSE ANNUA 

𝜋(") =
1

𝑑(𝑝𝑐)
 

A causa del moto di rivoluzione della 

Terra attorno al Sole, una stella 

abbastanza vicina è affetta da uno 

spostamento angolare apparente sulla 

volta celeste, che raggiunge il suo 

massimo dopo sei mesi. π è l’angolo di 

parallasse, d la distanza della stella dalla 

Terra. Se non si usano costanti di 

proporzionalità, l’angolo π va espresso in 

arcosecondi mentre d va espressa in 

parsec.  

Tale relazione è usata in astronomia per 

la misura delle distanze di stelle vicine 

(generalmente entro 100 pc).  

 

 

 

 

 

 

 

 

 

 



Bignamino di Astronomia 

   233 

 

 

 

MECCANICA CELESTE 
 

 

 

 

 

LEGGE di GRAVITAZIONE UNIVERSALE 

𝐹 =
𝐺𝑚1𝑚2

𝑑2
 

Questa relazione esprime il modulo della forza gravitazionale che si esercita 

tra due masse 𝑚1 e 𝑚2 puntiformi poste alla distanza reciproca d. La relazione 

si mantiene uguale se le due masse hanno simmetria e distribuzione di densità 

sferica. In quest’ultimo caso la distanza d è la distanza tra i due centri delle 

sfere. G è una costante universale e vale circa 6.674 ∗  10−11 𝑁 𝑚2 𝑘𝑔−2 

La forza che il 

corpo 1 esercita 

sul corpo 2 è 

diretta lungo la 

congiungente 1-2 

e ha verso rivolto 

verso il corpo 1. È 

uguale e opposta alla forza che il corpo 2 esercita sul corpo 1 (forza attrattiva). 
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ENERGIA POTENZIALE GRAVITAZIONALE 

𝑈 = −
𝐺𝑚1 𝑚2

𝑑
 

L’energia potenziale gravitazionale di un corpo di massa 𝑚1 che si trova nel 

campo gravitazionale 

generato da un corpo di 

massa 𝑚2 a distanza d da 

esso esprime il lavoro 

che compirebbe la forza 

di gravitazione se il 

corpo di massa 𝑚1 

venisse allontanato dal 

corpo di massa 𝑚1 

indefinitamente. Dunque, essa è nulla a distanza infinita. Il segno negativo 

deriva dalla proprietà della forza gravitazionale di essere attrattiva, che le 

conferisce la tendenza a creare sistemi legati (vedi il Sistema Solare).  

 

 

 

 

ENERGIA POTENZIALE GRAVITAZIONALE 

𝐸 = 𝐾 + 𝑈 = −
𝐺𝑚1 𝑚2

2𝑎
 

La lettera a nella relazione scritta sopra rappresenta il semiasse maggiore 

dell’orbita ellittica. L’energia su orbita ellittica è negativa perché il sistema è 

legato (vedi relazione più avanti). 
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ORBITE ELLITTICHE 
 

𝑃𝐹1 + 𝑃𝐹2 = 2𝑎   

 𝑒 =
𝑐

𝑎
    

𝑐2 + 𝑏2 = 𝑎2  
 

𝑑𝑎 = 𝑎(1 + 𝑒)  
 

 𝑑𝑝 = 𝑎(1 − 𝑒) 
 

𝑒 =
𝑑𝑎−𝑑𝑝

𝑑𝑎+𝑑𝑝
             𝑒 =  √1 − (

𝑏

𝑎
)
2
 

 

𝑆 =  𝜋𝑎𝑏 
 

 

 

e = eccentricità 

a = semiasse maggiore 

b = semiasse minore 

c = semidistanza focale 

𝑑𝑎  = distanza all’afelio 

𝑑𝑝 =distanza al perielio 

𝐹1, 𝐹2 = fuochi 

P = punto generico sull’ellisse 

S = superficie dell’ellisse 
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SECONDA E TERZA LEGGE DI KEPLERO 
 

2𝑎 𝑙𝑒𝑔𝑔𝑒:     

 𝑣𝑎𝑑𝑎 = 𝑣𝑝𝑑𝑝 

 

3𝑎𝑙𝑒𝑔𝑔𝑒:    

𝑇2

𝑎3
= 𝑘 =

4𝜋2

𝐺(𝑀 +𝑚)
    

𝑠𝑒 𝑀 ≫ 𝑚 𝑎𝑙𝑙𝑜𝑟𝑎 𝑘 ≈
4𝜋2

𝐺𝑀
 

 

Un sistema formato da due corpi sottoposti esclusivamente alla mutua 

attrazione gravitazionale è un sistema isolato: in questo sistema si conserva il 

momento angolare rispetto a un polo qualsiasi. La seconda legge di Keplero 

è una conseguenza di questa conservazione. Il raggio vettore spazza aree 

uguali in tempi uguali. 

La terza legge di Keplero afferma che i quadrati dei periodi orbitali sono 

proporzionali ai cubi dei semiassi maggiori per ciascun pianeta che orbita 

attorno alla medesima stella. In realtà questa è una legge approssimata che 

vale solo se le masse dei pianeti sono molto più piccole della massa 

dell’oggetto centrale. Altrimenti a seconda del pianeta preso in 

considerazione k cambia. 

Nelle formule: 

T = periodo orbitale 

a = semiasse maggiore 

𝑣𝑎  = velocità all’afelio 

𝑑𝑎 = distanza all’afelio 

𝑣𝑝 = velocità al perielio 

𝑑𝑝 = distanza al perielio 

M = massa oggetto centrale 

m = massa pianeta 
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CONSERVAZIONE DEL’ENERGIA (!!!) E 

RELAZIONE ORBITE – ENERGIA 
 

𝑬 = 𝑲 +𝑼 = 𝒄𝒐𝒔𝒕𝒂𝒏𝒕𝒆 

𝐸 < 0  ↔ 𝑜𝑟𝑏𝑖𝑡𝑒 𝑒𝑙𝑖𝑡𝑡𝑖𝑐ℎ𝑒 

𝐸 = 0 ↔ 𝑜𝑟𝑏𝑖𝑡𝑒 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐ℎ𝑒 

𝐸 > 0 ↔ 𝑜𝑟𝑏𝑖𝑡𝑒 𝑖𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐ℎ𝑒 

 

Il campo gravitazionale è conservativo, 

dunque l’energia meccanica di un corpo 

sottoposto esclusivamente alla forza di 

gravità si conserva. La forma delle orbite 

per un sistema a due corpi dipende dal 

valore dell’energia meccanica; le orbite 

sono curve coniche. 
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PERIODO SINODICO 
 

1

𝑆
= |

1

𝑃
−
1

𝑇
 | 

 

Il periodo sinodico S è 

l’intervallo di tempo tra due 

congiunzioni consecutive di 

un pianeta con il Sole quando 

osservato da un altro pianeta. 

P è il periodo siderale del 

pianeta, mentre T è il periodo 

siderale del pianeta da cui si 

osserva la congiunzione. 

Se il pianeta osservato è esterno: 

1

𝑆
=
1

𝑇
−
1

𝑃
 

Se invece è interno: 

1

𝑆
=
1

𝑃
−
1

𝑇
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VELOCITA’ ORBITALI 
 

𝑣𝑐𝑖𝑟𝑐 = √
𝐺𝑀

𝑅
            

 𝑣𝑝𝑎𝑟𝑎𝑏 = √
2𝐺𝑀

𝑅
             𝑣𝑒𝑙𝑙𝑖𝑡𝑡𝑖𝑐𝑎 = √𝐺𝑀 (

2

𝑟
−
1

𝑎
) 

 

Dall’ultima relazione: 

𝑣𝑝𝑒𝑟𝑖𝑒𝑙𝑖𝑜 = √
𝐺𝑀

𝑎
 (
1 + 𝑒

1 − 𝑒
)   

 𝑣𝑎𝑓𝑒𝑙𝑖𝑜 = √
𝐺𝑀

𝑎
 (
1 − 𝑒

1 + 𝑒
) 

 

𝑣𝑐𝑖𝑟𝑐 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡à 𝑠𝑢 𝑜𝑟𝑏𝑖𝑡𝑎 𝑐𝑖𝑟𝑐𝑜𝑙𝑎𝑟𝑒                                       

𝑎 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑧𝑎 𝑟 𝑑𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑜 𝑎𝑡𝑡𝑟𝑎𝑡𝑡𝑜𝑟𝑒 

𝑣𝑝𝑎𝑟𝑎𝑏 = 𝑣. 𝑠𝑢 𝑜𝑟𝑏𝑖𝑡𝑎 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐𝑎                                     

𝑒 = 𝑒𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡à 

𝑣𝑒𝑙𝑙𝑖𝑡𝑡𝑖𝑐𝑎 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡à 𝑠𝑢 𝑜𝑟𝑏𝑖𝑡𝑎 𝑒𝑙𝑙𝑖𝑡𝑡𝑖𝑐𝑎 𝑑𝑖 𝑠𝑒𝑚𝑖𝑎𝑠𝑠𝑒 𝑎 

 

Le presenti velocità sono ricavate dalla legge di conservazione dell’energia 

meccanica 
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TELESCOPI 
 

 

 

POTERE RISOLUTIVO 

𝛼 = 1.22
𝜆

𝐷
 

Il potere risolutivo è la minima 

distanza angolare tra due sorgenti 

di luce che possono essere viste 

separate (criterio di Rayleigh). 

Nella determinazione del potere 

risolutivo interviene l’apertura 

dello strumento e non 

l’ingrandimento e il risultato della 

formula riportata è in radianti. 

Nella formula: 

 

λ=lunghezza d’onda osservata  D=diametro dell’obiettivo 

 

 

INGRANDIMENTO DI UN TELESCOPIO 

𝐼 =
𝐹

𝑓
 

Dove F=focale dell’obiettivo e f=focale dell’oculare 

L’ingrandimento è una grandezza 

adimensionale (rapporto di due 

grandezze che in questo caso 

hanno le dimensioni di una 

lunghezza) che quantifica la 

capacità di un sistema ottico di far 

apparire di dimensioni maggiori un certo oggetto lontano. 
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ASTROFISICA STELLARE 
 

 

 

LEGGE DI STEFAN-BOLTZMANN 

𝐿 = 4𝜋𝑅2𝜎𝑇4 

L’energia erogata per unità di superficie e tempo è proporzionale alla quarta 

potenza della temperatura (legge di Stefan-Boltzman). Per una stella 

(approssimata sferica e considerata un corpo nero per poter applicare questa 

formula), è possibile calcolare la sua luminosità moltiplicando la sua 

superficie per la costante di Stefan e la sua temperatura alla quarta. La 

costante vale 𝜎 = 5.67 ∗ 10−8 𝑊 𝑚−2𝐾−4 

 

 

LEGGE DI PLANCK 
 

𝐸 = ℎ𝜐 

La legge di Planck lega l’energia del fotone alla sua frequenza. Infatti, la 

radiazione elettromagnetica 

può essere immaginata 

come un insieme di 

“pacchetti di energia” a cui 

si dà il nome di fotoni. 

Grazie ad essi, può eccitare 

un elettrone in un atomo 

cedendo ad esso la sua 

energia. In formula 𝜈 indica 

la frequenza del fotone e ℎ è 

la costante di Planck che 

vale ℎ = 6.63 ∗ 10−34𝐽 ∗ 𝑠 
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LEGGE DELLO SPOSTAMENTO DI WIEN 

𝜆𝑚𝑎𝑥 =
𝑏

𝑇
 

 

La lunghezza d’onda massima di uno 

spettro di corpo nero è inversamente 

proporzionale alla temperatura assoluta 

La costante b (costante di Wien) vale circa 

2.898 ∗  10−3 𝑚 ∗ 𝐾 

 

 

 

FORMULA DI POGSON 
 

𝑚1 −𝑚2 = −2.5 log (
𝐹1
𝐹2
) 

𝑚 −𝑀 = 5𝑙𝑜𝑔𝑑 − 5 

Dove: 

𝑚1;2 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑖𝑛𝑒 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡𝑒                                           

 𝑀 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑖𝑛𝑒 𝑎𝑠𝑠𝑜𝑙𝑢𝑡𝑎 

𝑚 = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑖𝑛𝑒 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡𝑒                                              

 𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑧𝑎 𝑑𝑒𝑙𝑙𝑎 𝑠𝑡𝑒𝑙𝑙𝑎 

𝐹1;2 = 𝑓𝑙𝑢𝑠𝑠𝑜 𝑑𝑒𝑙𝑙𝑒 𝑠𝑡𝑒𝑙𝑙𝑒 
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CLASSIFICAZIONE SPETTRALE (1) 

La prima classificazione stellare in assoluto fu eseguita nel 1868 da Padre 

Secchi, direttore dell’osservatorio del Collegio Romano, che raggruppò le 

stelle in 4 classi: 

- Bianche e rosse 

- Bianco-azzurre 

- Gialle 

- Arancioni e rosse 

Questa catalogazione fu poi trovata imprecisa e venne rifatta da un team di 

donne a capo del quale vi era Wilhelmina Fleming. Le stelle vennero 

classificate in 7 classi in base al loro spettro e alla loro temperatura 

superficiale. Le 7 classi sono indicate con le lettere: 

𝑂     𝐵     𝐴    𝐹    𝐺    𝐾    𝑀 

E sono divise in sottoclassi, contrassegnate da un numero posto a fianco alla 

lettera 

Per ricordare le lettere è stata inventata la seguente filastrocca:  

Oh Be A Fine Girl and Kiss Me 

Ultimamente sono state inserite le classi R, N ed S (che possono essere 

ricordate con l’aggiunta delle parole Right Now Smack alla filastrocca 

precedente) 

 

 

 

 



 Bignamino di Astronomia 
 

 244  
  

 

 

CLASSIFICAZIONE SPETTRALE (2) 
 

Il secondo metodo per classificare le stelle (che venne chiamato 

classificazione MK) è in base alla loro luminosità. Con questo metodo si capì 

che la luminosità di una stella dipende dalla sua temperatura superficiale e 

dalla sua dimensione. Le classi di luminosità sono: 

0 Ipergiganti 

I Supergiganti 

II Giganti luminose 

III Giganti normali 

IV Subgiganti 

V Stelle di sequenza principale 

VI Subnane 

VII Nane bianche 
 

Il Sole è una stella G2V. L’indicazione della temperatura è affidata ai primi 

due caratteri (G2), mentre l’altro parametro riguarda le dimensioni (V). 

 

 

“LIMITI STELLARI” 
 

𝐿𝑖𝑚𝑖𝑡𝑒 𝑑𝑖 𝐶ℎ𝑎𝑛𝑑𝑟𝑎𝑠𝑒𝑘ℎ𝑎𝑟:     𝑀 = 1.4𝑀𝑠𝑜𝑙𝑒 

𝐿𝑖𝑚𝑖𝑡𝑒 𝑇𝑂𝑉:    1.5 − 3 𝑀𝑆𝑜𝑙𝑒  

Il limite di Chandrasekhar, o massa di Chandrasekhar, è il limite superiore 

che può raggiungere la massa di una nana bianca (altrimenti sarebbe una stella 

di neutroni). Il limite TOV (dalle iniziali dei fisici Tolman-Oppenheimer-

Volkoff) indica il “confine” tra una stella di neutroni e un buco nero. 
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RAGGIO DI SCHWARZSCHILD 
 

𝑅 =
2𝐺𝑀

𝑐2
 

Il raggio di Schwarzschild è un punto di non ritorno, che prende il nome 

dall’astrofisico tedesco Karl Schwarzschild. Quando una stella collassa nel 

caso che le sue dimensioni scendano al di sotto del raggio di Schwarzschild 

essa diventa un buco nero (cioè un oggetto con una gravità tale da non lasciare 

sfuggire nemmeno la luce). 

 

 

 

DATI UTILI del SOLE 

Massa:                             𝑚𝑠 = 1.99 ∗ 1030𝑘𝑔 

Luminosità:                      𝐿𝑆 = 3.85 ∗ 1026𝑊 

Magnitudine assoluta:      𝑀𝑆 = 4.83 𝑚𝑎𝑔 

Costante solare:               𝐾 =
𝐿𝑠

4𝜋𝑈𝐴2
= 1368

𝑊

𝑚2 

Temperatura:                   𝑇𝑠 = 5778 𝐾 

Raggio equatoriale:          𝑅𝑆 = 6.96 ∗ 108𝑚 

Periodo di rotazione:        𝑃𝑟𝑜𝑡 = 25 𝑔𝑖𝑜𝑟𝑛𝑖 
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LEGGE di HUBBLE-LEMAITRE 

𝑣𝑟 = 𝐻𝑑 

Per z molto piccoli: 

𝑣𝑟 = 𝑐𝑧 

La legge di Hubble (o legge di Hubble-Lemaître) afferma che esiste una 

relazione lineare tra lo 

spostamento verso il 

rosso della luce 

emessa dalle galassie e 

la loro distanza. Tanto 

maggiore è la distanza 

della galassia e tanto 

maggiore sarà il suo 

spostamento verso il 

rosso. Nella formula, 

𝑣𝑟 è la velocità radiale, 

d la distanza, c la velocità della luce e H è la costante di Hubble (il cui valore 

non è ben definito, ma che assumiamo in questo Bignamino pari a 

65.12 𝑘𝑚𝑠−1𝑀𝑝𝑐−1) 
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PER APPROFONDIRE…  

 

EFFETTO DOPPLER 

 

In generale l’effetto Doppler si verifica ogni qual volta si misura una 

variazione, rispetto al valore iniziale, della frequenza e della lunghezza d'onda 

percepita da un osservatore raggiunto da un'onda emessa da una sorgente che 

si trova in movimento rispetto all'osservatore stesso o viceversa.  

Bisogna specificare che esiste una 

radicale differenza tra il fenomeno di cui 

stiamo parlando relativo alle onde 

luminose e l’effetto Doppler riferito alle 

onde acustiche. La differenza è insita 

nella diversità di tipologie di onde. Le 

onde acustiche (longitudinali) 

necessitano di un mezzo per propagarsi. 

Questo mezzo (l’aria, per esempio) 

costituisce un sistema di riferimento 

privilegiato rispetto al quale il mezzo 

risulta fisso.  

C'è una differenza fisica tra il caso in cui l'osservatore è fermo e la sorgente 

in moto, e quello in cui la sorgente è a riposo e l'osservatore in moto. Se la 

sorgente S ed il rilevatore sono in avvicinamento lungo la stessa retta, la 

frequenza che l’osservatore (il rilevatore) percepisce è data dalla formula: 

𝜐′= 𝜐
1+

𝑉𝑟
𝑉𝑜𝑛𝑑𝑎

1− 
𝑉𝑠

𝑉𝑜𝑛𝑑𝑎

 

Se il rilevatore e la sorgente si stanno allontanando, la frequenza percepita è 

data da: 

𝜐′= 𝜐
1− 

𝑉𝑟
𝑉𝑜𝑛𝑑𝑎

1+  
𝑉𝑠

𝑉𝑜𝑛𝑑𝑎

        (𝜐 è 𝑙𝑎 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑧𝑎 𝑝𝑟𝑜𝑝𝑟𝑖𝑎 𝑑𝑒𝑙𝑙′𝑜𝑛𝑑𝑎) 
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La luce è un’onda elettromagnetica. Queste sono onde trasversali e non 

necessitano di un mezzo per propagarsi (caro vecchio etere addio!) ed ancora, 

mentre per le onde acustiche la velocità di propagazione dell’onda dipende 

dalla velocità della 

sorgente, nel caso 

della luce la velocità 

dell’onda è sempre la 

stessa per ogni 

osservatore inerziale, 

indipendentemente 

dal fatto che la 

sorgente sia ferma o in 

moto. Non essendo possibile capire se a muoversi sia la sorgente o 

l’osservatore, si parla di velocità relativa osservatore-sorgente. E nella 

trattazione relativistica dell’effetto Doppler occorre considerare l’effetto della 

dilatazione del tempo dovuta al movimento. 

Se la sorgente S ed il rilevatore R sono in allontanamento si ha: 

𝑇𝑅 = 𝑇𝑆√
1 +  𝛽

1 − 𝛽
 

Se sono in avvicinamento si ha:   

𝑇𝑅 = 𝑇𝑆√
1 −  𝛽

1 + 𝛽
 

Con: 

𝛽 =
𝑣

𝑐
 

Poiché la frequenza è data da: 

𝑣 =
1

𝑇
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Invertendo le precedenti formule si ha: 

𝜈𝑅 = 𝜈𝑆 √
1− 𝛽

1+𝛽
   con S e R in allontanamento 

𝜈𝑅 = 𝜈𝑆 √
1+ 𝛽

1−𝛽
        con S e R in avvicinamento 

Lo spettro emesso dalle stelle è a righe di assorbimento, e analizzandolo si 

può notare che esse si 

trovano spesso in 

posizioni diverse 

rispetto allo spettro di 

riferimento misurato in 

laboratorio. Gli estremi 

dello spettro visibile 

sono il blu (frequenze 

maggiori) e il rosso 

(frequenze minori). 

L’effetto Doppler viene chiamato in astronomia “spostamento verso il rosso” 

se lo spettro appare spostato su lunghezze d’onda maggiori, e “spostamento 

verso il blu” se spostato su lunghezze d’onda minori.  

L’effetto Doppler in astrofisica viene utilizzato per misurare la velocità con 

cui le stelle e le galassie si stanno avvicinando o allontanando da noi, per 

misurare la loro velocità di rotazione, per scoprire se una stella che ci appare 

singola è binaria con componenti molto vicine tra loro. In astronomia l’effetto 

Doppler si applica anche per calcolare l’espansione cosmologica 

dell’universo.  
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SPOSTAMENTO VERSO IL ROSSO (REDSHIFT) 
 

𝑧 =
𝜆𝑜𝑠𝑠𝑒𝑟𝑣𝑎𝑡𝑎− 𝜆𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑖𝑜

𝜆𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑜𝑟𝑖𝑜
 

Nel caso di redshift z>0 

Se la sorgente si allontana dall'osservatore con velocità v, e questa velocità è 

molto più piccola della velocità della luce c, allora lo spostamento verso il 

rosso è approssimativamente: 

𝑧 =
𝑣

𝑐
 

Altrimenti bisogna considerare il fattore relativistico: 

𝑧 =  √
1 +  𝛽

1 −  𝛽
  − 1 

L'approssimazione del redshift come effetto Doppler è valida solo se 𝑧 ≪ 1 

 

 

 

REDSHIFT COSMOLOGICO 
 

Il redshift cosmologico è lo spostamento relativo in frequenza di un'onda 

elettromagnetica dovuto all'espansione dell'universo. Si spiega ipotizzando 

che le lunghezze d'onda varino allo stesso modo delle distanze per effetto 

dell'espansione dell'universo. La lunghezza d'onda è proporzionale al fattore 

di scala dell'universo. 

𝑧 =  
𝐻𝑑

𝑐
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REDSHIFT GRAVITAZIONALE 

 

Un fotone, emesso da una sorgente di campo gravitazionale, perde energia e 

quindi presenta uno spostamento verso il rosso legato all’intensità del campo 

misurata nel punto in cui si trova il fotone. L’energia di un fotone che si 

muove ad una distanza r nel campo gravitazionale di una stella di grande 

massa avrà una energia uguale alla differenza tra quella iniziale e quella 

dissipata nel campo gravitazionale. 

 

𝐸’ =  𝐸 −  𝑈(𝑟𝑓𝑜𝑡𝑜𝑛𝑒)   

𝐸’ = ℎ𝜈’   

𝐸 =  ℎ𝜈  

𝑈(𝑟)  =  
𝐺𝑀𝑚

𝑟
       

 

Da 𝐸 = 𝑚𝑐2: 

𝑚 = 
𝐸

𝑐2
=
ℎ𝑣

𝑐2
   

 

Per cui: 

𝑈(𝑟𝑓𝑜𝑡𝑜𝑛𝑒) =  
𝐺𝑀ℎ𝜈

𝑟𝑐2
 

ℎ𝜈’ =  ℎ𝜈  − 
𝐺𝑀ℎ𝜈

𝑟𝑐2
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 ℎ𝜈’ =  ℎ𝜈 (1 − 
𝐺𝑀

𝑟𝑐2
)    

 

Da cui:      

𝜈’ =  𝜈 (1 −
𝐺𝑀

𝑟𝑐2
)    

 

Quando la distanza r dal centro di massa della massa gravitante è 

sufficientemente grande rispetto al raggio di Schwarzschild: 

𝑧 (𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑧𝑖𝑜𝑛𝑎𝑙𝑒)  =  
𝐺𝑀

𝑟𝑐2
 

Più in generale: 

𝑧 =  
1

√1 − 𝑟𝑠
 − 1    

𝑟𝑠  =  
2𝐺𝑀

𝑐2
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TERMODINAMICA ed EFFETTO DOPPLER 

 

La luce emessa dalla fotosfera di una stella, prima di propagarsi nello spazio 

circostante, deve attraversare l’atmosfera stellare. Questo strato è composto 

da un gas di atomi e/o molecole, generalmente più freddo della fotosfera, in 

grado di assorbire specifiche frequenze a seconda della natura della particella.  

Gli atomi, oltre che assorbire la radiazione, possono riemetterla. In questo 

caso non si osserveranno righe di assorbimento ma righe in emissione.  

 

Questa agitazione termica comporta dei movimenti in avvicinamento ed 

allontanamento rispetto all’osservatore e quindi l’effetto Doppler si manifesta 

anche a livello microscopico in una nube di particelle in agitazione termica. 

Se il gas si trova in equilibrio termico, la distribuzione delle velocità di queste 

particelle segue quella di Maxwell-Boltzmann ed il valore più probabile è 

dato da: 

𝑢 =  √
2𝐾𝑇

𝑚
 

Dove: m = massa della particella 

Sappiamo che: 

𝜆𝑜𝑠𝑠 = 𝜆𝑙𝑎𝑏 ( 1  ±
𝑣

𝑐
 )       

∆𝜆 = 𝜆𝑜𝑠𝑠- 𝜆𝑙𝑎𝑏          
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∆𝜆 =  𝜆𝑙𝑎𝑏 ( 1  ±
𝑣

𝑐
 ) - 𝜆𝑙𝑎𝑏          

∆𝜆 =  𝜆𝑙𝑎𝑏 ( 1  ±
𝑣

𝑐
 - 1) 

∆𝜆

𝜆𝑙𝑎𝑏
   = ±

𝑣

𝑐
   

se v  ≪ 𝑐   allora z ≈
𝑣

𝑐
 

∆𝜆

𝜆𝑙𝑎𝑏
 =  𝑧 =

𝑢

𝑐
  

     𝑧 = 
1

𝑐
 √

2𝐾𝑇

𝑚
  

∆𝜆

𝜆
=

1

𝑐
 √

2𝐾𝑇

𝑚
 

Poiché le particelle si allontanano e si avvicinano, la riga si dilata sia verso 

lunghezze d’onda a destra che a sinistra. Allora alla formula precedente 

dobbiamo aggiungere un fattore 2: 

∆𝜆 =   2 
1

𝑐
 √

2𝐾𝑇

𝑚
 

Dalla stima della dilatazione della riga si può pervenire alla temperatura. 
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TERMODINAMICA 
 

 

 

 

 

  

EQUAZIONE DI STATO (GAS PERFETTO) 

𝑝𝑉 = 𝑛𝑅𝑇 

Dove: 

p = pressione 

V = volume 

n = numero di moli 

R = costante 

T = temperatura 
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ENERGIA INTERNA 

L'energia interna U di un gas è data dalla somma di tutte le energie cinetiche 

delle particelle, in un gas perfetto si considera nulla l'energia potenziale e 

l'energia cinetica è solo energia di traslazione. 

𝐾𝑚=  
1

2
𝑚𝑣𝑞𝑚

2  

𝑣𝑞𝑚  = √
3𝑅𝑇

𝑀
 

𝐾𝑚=  
1

2
𝑚
3𝑅𝑇

𝑀
 

𝐾𝑚=  
1

2
𝑚
3𝑅𝑇

𝑚𝑁𝑎
 

𝐾𝑚=  
1

2

3𝑅𝑇

𝑁𝑎
 

L’energia traslazionale è sempre uguale a: 

𝐾𝑚=  
3

2
𝑘𝑇 

indipendentemente della massa o dalla natura della molecola. 
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TEOREMA dell’EQUIPARTIZIONE 

dell’ENERGIA 

In base al teorema dell’equipartizione dell’energia, in generale, l’energia 

cinetica media di una singola molecola di un gas perfetto è data da: 

< 𝜀 > =  
𝑓

2
𝑘𝑇 

Dove f indica il numero di gradi di libertà e k la costante di Boltzmann. Per 

grado di libertà si intende un modo in cui una molecola può assorbire energia. 

Una molecola di un gas monoatomico può essere schematizzata come un 

punto materiale, quindi ha 3 gradi di libertà. Una molecola più complessa ha 

più gradi di libertà, in quanto possiede altri tipi di energia dovuti alla 

vibrazione e al movimento di rotazione. 

Per una molecola di gas monoatomico: 

< 𝜀 > =  
3

2
𝑘𝑇  

Per n moli: 

𝑈 =  
3

2
𝑁𝑘𝑇 =

3

2
𝑁
𝑅

𝑁𝐴
𝑇 =

3

2
𝑛𝑅𝑇 

Per un gas biatomico: 

𝑈 =  
5

2
𝑛𝑅𝑇 

Una molecola biatomica ha 5 gradi di libertà (3 traslazionali e 2 rotazionali). 

Ad alte temperature, diventano rilevanti anche i due gradi di libertà 

vibrazionali di una molecola di tale genere: essi portano il numero 

complessivo a 7.  

All’aumentare del numero di atomi della molecola (𝑁𝑎𝑡𝑜𝑚𝑖 ≥ 3, come per 

esempio 𝐶𝑂2), il numero di gradi di libertà vibrazionali indipendenti aumenta 

e dipende anche dalla geometria della molecola. Bisognerà di volta in volta 

considerare tali nuovi termini per determinare correttamente l’energia interna 

del gas. 
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APPROFONDIMENTI 
 

Vettori e operazioni tra vettori 
 

Prodotto scalare e vettoriale 
 

In Fisica molte grandezze hanno carattere vettoriale, e tali vettori sono 

tipicamente orientati nello spazio tridimensionale. In tale spazio, stabilito un 

sistema di riferimento cartesiano ortogonale, ogni punto è identificato 

univocamente da tre numeri reali (una terna di numeri): le coordinate del 

punto (generalmente indicate con ascissa, ordinata e quota: x, y, z).  

L’insieme di tutte le terne ordinate di numeri reali, cioè l’insieme che ha per 

elementi gruppi di tre numeri reali, che differiscono tra loro anche per l’ordine 

con cui tali numeri si presentano in sequenza (cioè, per esempio, (1,2,3) e 

(2,1,3) sono due elementi diversi), prende il nome di ℝ3, ove il simbolo 

ℝ rappresenta l’insieme dei numeri reali. Quindi (il simbolo := si legge “si 

definisce come”): 

ℝ3 ≔ { (𝑥, 𝑦, 𝑧) ∶ 𝑥, 𝑦, 𝑧 ∈  ℝ} 

In Fisica i vettori sono generalmente applicati in un punto: se io spingo una 

porta con un dito per aprirla, sto applicando una forza in un punto ben preciso 

dello spazio; in algebra spesso si considerano vettori applicati nell’origine: 

molte operazioni algebriche che coinvolgono i vettori non dipendono infatti 

da dove sono applicati. 

Facciamo una riflessione: se un’estremità del vettore (la coda) si trova 

nell’origine, allora per identificare completamente il vettore considerato basta 

conoscere le coordinate nello spazio della punta. Ma tali coordinate sono un 

elemento di ℝ3, quindi possiamo identificare un vettore applicato nell’origine 

con un elemento di ℝ3 (cioè una terna di numeri reali). Possiamo quindi 

scrivere, per esempio: 

𝑣⃗ = (
1

2
,
2

3
, 4) 

Intendendo il vettore che ha punto di applicazione nell’origine e componenti 

x, y, z rispettivamente pari a ½ , 2/3 e 4. 
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Tenendo presente questa riflessione, definiamo le prime e più elementari 

operazioni tra vettori. 

 

Somma di due vettori (ma anche differenza: 

𝑣⃗ = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) , 𝑢⃗⃗ = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) 

𝑣⃗ ± 𝑢⃗⃗ ≔ (𝑣𝑥 ± 𝑢𝑥, 𝑣𝑦 ± 𝑢𝑦, 𝑣𝑧 ± 𝑢𝑧) 

 

Prodotto per uno scalare k ∈ ℝ: 

𝑣⃗ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) 

𝑘𝑣⃗ ∶= (𝑘𝑣𝑥, 𝑘𝑣𝑦, 𝑘𝑣𝑧) 

 

Forti di queste considerazioni, introduciamo il prodotto scalare: 

 

IL PRODOTTO SCALARE 

Per prodotto scalare qui intenderemo il solo prodotto euclideo: il “mondo dei 

prodotti scalari” è infatti molto vasto, ma parlarne in generale non è 

l’obiettivo di questo testo; ci limiteremo a parlarne in maniera estremamente 

sintetica, dando le informazioni essenziali che possono servire come 

prerequisito per gli argomenti successivi. 
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Dati i due vettori 𝑣⃗ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) e 𝑢⃗⃗ = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧), il loro prodotto scalare 

euclideo è un numero reale così definito: 

  

𝑣⃗ ∗ 𝑢⃗⃗ = 𝑣𝑥𝑢𝑥 + 𝑣𝑦𝑢𝑦 + 𝑣𝑧𝑢𝑧 

𝑄𝑢𝑖𝑛𝑑𝑖 𝑣⃗ ∗ 𝑢⃗⃗  ∈  ℝ  𝑒 𝑛𝑜𝑛 𝑎 ℝ3‼!) 

 

Esempio: 𝑣⃗ = (1,2,3) , 𝑢⃗⃗ = (3,2,1)   

𝑣⃗ ∗ 𝑢⃗⃗ = 1 ∗ 3 + 2 ∗ 2 + 3 ∗ 1 = 3 + 4 + 3 = 10 

 

Notiamo dalla definizione come il prodotto scalare sia commutativo (𝑣⃗ ∗ 𝑢⃗⃗ =

𝑢⃗⃗ ∗ 𝑣⃗) e sia anche distributivo (sia a destra sia a sinistra), cioè 

𝑣⃗ ∗ (𝑢⃗⃗ + 𝑤⃗⃗⃗) = 𝑣⃗ ∗ 𝑢⃗⃗ + 𝑣⃗ ∗ 𝑤⃗⃗⃗ = (𝑢⃗⃗ + 𝑤⃗⃗⃗) ∗ 𝑣⃗ 

 

Il modulo (anche norma) di un vettore è definito come 

|𝑣⃗|: =  √𝑣⃗ ∗ 𝑣⃗ = √𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 

 

Dato un vettore 𝑣⃗, definiamo il corrispondente versore 𝑣: 

𝑣 ∶=
𝑣⃗

|𝑣⃗|
 

Si tratta di un vettore con stessa direzione e verso di v, ma con modulo 

unitario (cioè uguale a 1): provate a verificarlo applicando le definizioni. 

I versori con punto di applicazione nell’origine e diretti lungo l’asse delle x, 

y, z (verso valori di ascissa, ordinata e quota positivi) sono denotati con 

simboli piuttosto diffusi, rispettivamente 𝒊̂,  𝒋̂, 𝒌̂.  

Quindi: 

𝒊̂ = (1,0,0) ,  𝒋̂ = (0,1,0) 𝑒 𝒌̂ = (0,0,1) 
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Ogni vettore dello spazio può essere scritto per mezzo di questi versori. In 

generale: 

𝑣⃗ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) 𝑠𝑖 𝑝𝑢ò 𝑠𝑐𝑟𝑖𝑣𝑒𝑟𝑒 𝑐𝑜𝑠ì:  𝑣⃗ = 𝑣𝑥  𝑖̂ + 𝑣𝑦 𝑗̂ + 𝑣𝑧 𝑘̂. 

Questa proprietà si esprime dicendo che i, j, k generano lo spazio.  

 

 

 

Si dicono ortogonali (perpendicolari) due vettori il cui prodotto scalare è 

nullo. Potete verificare tramite questa definizione come i versori i, j, k sono 

perpendicolari tra loro. 

 

Due vettori 𝑣⃗ 𝑒 𝑤⃗⃗⃗  ∈  ℝ3 si dicono paralleli se esiste un numero 𝜇 ∈  ℝ tale 

che 

𝑣⃗ = 𝜇 𝑤⃗⃗⃗ 
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Si può dimostrare che, detto α l’angolo tra i due vettori v e w, il loro prodotto 

scalare è anche uguale a: 

𝑣⃗ ∗ 𝑤⃗⃗⃗ = |𝑣⃗||𝑤⃗⃗⃗| cos(𝛼) 

Relazione con cui forse sarete familiari, che mostra una proprietà importante 

di tale prodotto: esso non dipende dal sistema di riferimento scelto (norme e 

angolo sono indipendenti dal sistema scelto). 

Più avanti, per semplicità, ci riferiremo alla norma di un vettore indicandola 

tramite il simbolo del vettore non sovrastato dalla freccia. 

 

IL PRODOTTO VETTORIALE 

 

Definiamo prima formalmente il prodotto vettoriale tra due vettori in ℝ3, e 

poi diamo una relazione più semplice con cui forse voi sarete familiari: 

Dati i due vettori 𝑣⃗ = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) 𝑒 𝑤⃗⃗⃗ = (𝑤𝑥 , 𝑤𝑦, 𝑤𝑧),  il loro prodotto 

vettoriale corrisponde al seguente vettore avente componenti così definite: 

 

𝑣⃗ × 𝑤⃗⃗⃗ ∶= (𝑣𝑦𝑤𝑧 −𝑤𝑦𝑣𝑧, −𝑣𝑥𝑤𝑧 + 𝑣𝑧𝑤𝑥 , 𝑣𝑥𝑤𝑦 − 𝑣𝑦𝑤𝑥) 

𝑄𝑢𝑖𝑛𝑑𝑖 𝑣⃗ × 𝑤⃗⃗⃗  ∈  ℝ3 ‼! 

Riprendiamo i vettori del paragrafo precedente ed eseguiamone il loro 

prodotto vettoriale: 

 

𝑣⃗ = (1,2,3) , 𝑢⃗⃗ = (3,2,1) 

𝑣⃗ × 𝑢⃗⃗ = (2 ∙ 1 − 2 ∙ 3,−1 ∙ 1 + 3 ∙ 3, 1 ∙ 2 − 2 ∙ 3) = (−4, 8, −4) 

 

Adesso calcoliamo: 

𝑢⃗⃗ × 𝑣⃗ = (2 ∙ 3 − 2 ∙ 1, −3 ∙ 3 + 1 ∙ 1, 3 ∙ 2 − 2 ∙ 1) = (4,−8, 4) = 

= −(𝑣⃗ × 𝑢⃗⃗) 
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Sin da ora, quindi, notiamo come il prodotto vettoriale non gode della 

proprietà commutativa, bensì della proprietà anticommutativa: il prodotto 

vettoriale tra due vettori è uguale al vettore opposto al prodotto vettoriale tra 

i due vettori il cui ordine è commutato: abbiamo appena mostrato tale 

proprietà attraverso un esempio più facile da comprendere, piuttosto che 

svolgere i calcoli letterali più laboriosi. 

Calcoliamo adesso il prodotto scalare tra 𝑣⃗ × 𝑢⃗⃗ e ciascuno dei due vettori v e 

u: ci accorgeremo di un’altra proprietà interessante: 

(1,2,3) ∗ (−4,8,−4) =  −4 + 16 − 12 = 0 

(3,2,1) ∗ (−4,8,−4) =  −12 + 16 − 4 = 0 

Il prodotto scalare del vettore risultante dal prodotto vettoriale e ciascuno dei 

due vettori di partenza sono nulli: ciò vuol dire che il vettore risultante è 

ortogonale (perpendicolare) a ciascuno dei due vettori (controllare la 

definizione al paragrafo precedente)! 

Si può dimostrare abbastanza laboriosamente attraverso la definizione che, 

indicando con α l’angolo compreso fra i due vettori, il modulo del vettore 

risultante dal prodotto vettoriale tra due vettori u e v è pari a: 

|𝑣⃗ × 𝑢⃗⃗| = |𝑣⃗||𝑢⃗⃗| sin(𝛼) 

L’espressione scritta a destra dell’uguale è esattamente pari all’area del 

parallelogramma che ha per lati i due vettori v e u.  

Quindi sappiamo che il risultato del prodotto vettoriale tra due vettori è un 

vettore perpendicolare ai primi due e con modulo uguale all’area del 

parallelogramma che ha per lati i due vettori. Ma come determinarne il verso 

in maniera rapida? Si fa ricorso alla cosiddetta regola della mano destra. 

Supponete di voler determinare 

il verso di 𝑣⃗ × 𝑢⃗⃗ : ponete il 

pollice della mano destra in 

direzione del primo vettore, e 

dirigete le dita restanti in 

direzione del secondo vettore: il 

vettore risultante uscirà dal 

palmo della mano. Ricordatevi 

che la regola così enunciata vale 

solo per la mano destra!!! 
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Sono frequenti in Fisica i cosiddetti “tripli prodotti vettoriali”, cioè scritture 

siffatte: 

𝑎⃗ × ( 𝑏⃗⃗ × 𝑐) 

Una regola, facile da memorizzare per via del suo nome, permette di calcolare 

tale triplo prodotto vettoriale (che, ricordiamo, è un vettore!!!) in maniera 

rapida: è la regola del “BAC – CAB” (si legge “BAC men CAB”) 

𝑎⃗ × (𝑏⃗⃗ × 𝑐) = 𝑏⃗⃗(𝑎⃗ ∗ 𝑐) − 𝑐(𝑎⃗ ∗ 𝑏⃗⃗) 

Dove il simbolo * indica il prodotto scalare euclideo. 
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Introduzione del simbolo di sommatoria12 
 

Spesso in Fisica si ha a che fare con sistemi composti da molti corpi, e molte 

grandezze che coinvolgono il sistema sono date dalla somma delle grandezze 

che caratterizzano le singole componenti (grandezze additive). È scomodo 

scrivere esplicitamente queste somme molto lunghe, per cui si ricorre a una 

rappresentazione molto compatta, incentrata sul simbolo di sommatoria: 

Supponiamo di voler scrivere compattamente la somma dei primi n quadrati, 

cioè: 

𝑆 = 12 + 22 + 32 + 42 +⋯+ 𝑛2 

Tale somma S si può scrivere così: 

 

𝑆 =  ∑ 𝑘2
𝑛

𝑘=1

 

 

Il simbolo Σ (sigma maiuscola) prende il nome di simbolo di sommatoria. 

k è l’indice di sommatoria, un simbolo usato per indicare in maniera generica 

gli elementi dell’insieme coinvolto dall’operazione di sommatoria; 

1 ed n sono gli estremi entro cui varia l’indice: k assume tutti i valori compresi 

tra 1 ed n in questo caso; 

𝑘2 è l’espressione che dice come sono fatti i termini da sommare; in sostanza, 

per ogni numero k naturale compreso tra 1 ed n, bisogna calcolarne il 

quadrato (𝑘2) e poi sommare tutti i termini calcolati.  

La scrittura scritta sopra si legge “sommatoria per k che va da 1 a n di k al 

quadrato”. 

 

 

 

 
12 Da questo momento in poi, i vettori sono indicati in grassetto, senza freccia 
superiore: i loro moduli sono indicati con lo stesso simbolo ma non in grassetto. 



Bignamino di Astronomia 

   267 

Ulteriore esempio: 

L’espressione: 

 

∑𝑎𝑖

𝑛

𝑖=1

 𝑐𝑜𝑟𝑟𝑖𝑠𝑝𝑜𝑛𝑑𝑒 𝑎𝑙𝑙𝑎 𝑠𝑐𝑟𝑖𝑡𝑡𝑢𝑟𝑎 𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛 

 

La sommatoria gode di alcune proprietà che semplicemente derivano dalle 

caratteristiche dell’addizione, e che potete verificare scrivendo “per esteso” 

le somme: 

 

∑(𝑎𝑖 ± 𝑏𝑖)

𝑛

𝑖=1

= ∑𝑎𝑖

𝑛

𝑖=1

±∑𝑏𝑖

𝑛

𝑖=1 

 

 

∑𝜇 𝑎𝑖

𝑛

𝑖=1 

=  𝜇∑𝑎𝑖

𝑛

𝑖=1
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Terzo principio della dinamica 
 

Immaginate di spingere un oggetto inizialmente fermo. L’oggetto acquisterà 

una certa velocità per via dell’accelerazione di spinta: tale accelerazione è 

dovuta al fatto che tramite la vostra 

mano state imprimendo una forza 

sull’oggetto (II principio della 

dinamica). Durante la spinta, 

tuttavia, sicuramente avvertirete una 

“controspinta” da parte dell’oggetto 

sulla vostra mano: anche l’oggetto, 

cioè, sta rispondendo alla vostra 

forza con una forza che agisce sulla 

vostra mano. In generale, il III 

principio della dinamica stabilisce 

che: 

 

Se un corpo A esercita una forza su un corpo B, il corpo B eserciterà una 

forza sul corpo A nella stessa direzione della forza precedente, uguale in 

modulo ma opposta in verso. 

 

Quando spingiamo un oggetto, la forza che esso esercita su di noi durante la 

spinta non ci fa accelerare: essa è infatti completamente cancellata dagli attriti 

tra i nostri piedi e il terreno: provate invece a spingere un compagno 

inizialmente fermo (partendo anche voi da fermi) sulla superficie di un lago 

ghiacciato: comincerete anche voi a muovervi nella direzione opposta alla 

vostra spinta. 

È grazie a questo principio, complice la forza d’attrito tra il suolo e i nostri 

piedi, che riusciamo a camminare: quando compiamo un passo, spingiamo il 

suolo “all’indietro”: quest’ultimo risponde con una forza in verso opposto che 

ci permette di avanzare. 
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Quantità di moto 
Prima di dare la definizione formale di quantità di moto di un determinato 

punto materiale, conviene riflettere su alcune situazioni quotidiane. 

Vi sarà certamente capitato di essere colpiti 

da una palla. Supponiamo che la palla che 

vi colpisca abbia sempre la stessa velocità e 

le stesse dimensioni, ma la prima volta si 

tratti di una palla da basket, mentre la 

seconda volta di una palla di gommapiuma. 

Chiaramente, a parità di dimensioni, la palla 

da basket ha una massa maggiore della palla 

di gommapiuma, e, se esse vi colpiscono 

alla medesima velocità sino a fermarsi, 

farete più fatica a fermare completamente il 

pallone da pallacanestro piuttosto che la 

palla di gommapiuma. Supponete adesso di 

dover bloccare un vostro compagno che 

cammina verso di voi: farete certamente 

meno fatica rispetto a una situazione in cui 

quest’ultimo vi viene contro correndo 

velocemente. 

Capite dunque come, nell’interazione di un corpo con un altro a livello 

puramente meccanico, contino sia la velocità del corpo sia la sua massa; 

quest’interazione avviene per mezzo di forze, la cui intensità sarà dunque 

correlata all’entità di velocità e massa. 

Introduciamo una grandezza fisica adeguata a interpretare matematicamente 

tali interazioni, la quantità di moto. 

 

Dato un punto materiale di massa m, che possiede in un determinato sistema 

di riferimento una velocità v, si definisce quantità di moto di tale punto 

materiale la seguente grandezza vettoriale, tipicamente indicata con la lettera 

p (ma anche q): 

𝒑 = 𝑚𝒗 
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Chiaramente, dato un sistema costituito da N punti materiali, ciascuno di 

massa 𝑚𝑖, e avente velocità 𝒗𝒊 , si può estendere la definizione alla quantità 

di moto del sistema nel modo seguente: 

 

𝒑 = ∑𝑚𝑖𝒗𝒊

𝑵

𝒊=𝟏

= ∑𝒑𝒊

𝑵

𝒊=𝟏

 

 

L’unità di misura della quantità di moto è il 𝑘𝑔 ∗ 𝑚/𝑠. 

Ricordiamo che queste relazioni che stiamo scrivendo sono di tipo vettoriale, 

e i vettori nello spazio posseggono tre componenti (tre scalari). Di 

conseguenza, una relazione vettoriale corrisponde a tre relazioni scalari, una 

per ciascuna componente. In questo caso: 

𝒑 =  ∑𝑚𝑖𝒗𝒊

𝑵

𝒊=𝟏

→ 

{
 
 
 
 

 
 
 
 
𝑝𝑥 =∑𝑚𝑖𝑣𝑖𝑥

𝑵

𝒊=𝟏

𝑝𝑦 =∑𝑚𝑖𝑣𝑖𝑦

𝑵

𝒊=𝟏

 

𝑝𝑧 = ∑𝑚𝑖𝑣𝑖𝑧

𝑵

𝒊=𝟏
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Momento torcente di una forza rispetto a un polo 
 

Supponiamo di voler aprire una porta: come sappiamo dall’esperienza 

quotidiana, in genere una porta non è libera di traslare a nostro piacimento 

nello spazio, essendo ancorata tramite i cardini al muro di casa. La porta può 

solo ruotare attorno a un asse passante per i punti in cui essa si trova a essere 

incardinata. Supponiamo di applicare una forza perpendicolarmente alla 

porta, prima molto vicino ai cardini, poi dalla parte più lontana ai cardini: ci 

accorgeremo che apriremo 

la porta più agevolmente 

quando la forza sarà 

applicata lontano dall’asse 

di rotazione. Addirittura, se 

applichiamo la forza 

direttamente sull’asse di 

rotazione, non riusciremo 

minimamente a smuovere la 

porta, neanche di un 

millimetro. 

Adesso scegliamo un punto della porta diverso dall’asse, e applichiamo varie 

forze sempre della stessa intensità, ma con angoli diversi. Ci accorgeremo che 

la configurazione in cui riusciremo ad aprire la porta più agevolmente 

corrisponderà a quella in cui la forza applicata è perpendicolare al piano della 

porta. 

Queste considerazioni si possono generalizzare a ogni situazione in cui si vuol 

porre in rotazione un oggetto. Introduciamo una grandezza fisica utile a 

sintetizzare le considerazioni precedenti, il momento torcente. 

 

Dato un sistema di riferimento in cui abbiamo scelto un punto fisso P, si 

definisce momento di una forza F rispetto a P, indicato generalmente con la 

lettera greca τ, la seguente grandezza vettoriale: 

𝛕 = 𝐫 × 𝐅 

 

Dove r rappresenta il vettore uscente da P e con la punta nel punto 

d’applicazione di F. 
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L’unità di misura di questa grandezza è il newton per metro, 𝑁 ∗𝑚. 

Valgono le medesime considerazioni esposte al paragrafo precedente 

riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari. 

Notiamo come tale grandezza interpreti bene la situazione scritta sopra: 

Consideriamo solo il modulo del momento: 

τ = rF sin𝛼       𝑐𝑜𝑛 𝛼 𝑎𝑛𝑔𝑜𝑙𝑜 𝑓𝑟𝑎 𝑭 𝑒𝑑 𝒓 

Essendo |sin 𝛼 | ≤ 1    ( = 1 𝑠𝑒 𝛼 =
𝜋

2
+ 𝑘𝜋, 𝑐𝑜𝑛 𝑘 𝜖 ℤ), allora |𝛕| ≤ 𝑟𝐹. Il 

massimo valore di | 𝛕|, a parità di r e di F, si raggiunge quando α = 90°, cioè 

quando la forza è perpendicolare a r. 

Viceversa, se fissiamo α= 90°, allora τ = rF. A parità di F, più è grande r 

(cioè più lontano dal polo è applicata la forza), più grande è τ, cioè la capacità 

di mettere in rotazione l’oggetto (come la porta). 

Dato un insieme di N forze 𝑭𝒊, il cui punto di applicazione rispetto a un polo 

fisso P è individuato dai vettori 𝒓𝒊, allora il momento complessivo si può 

determinare così: 

𝛕 =  ∑𝒓𝒊 × 𝑭𝒊

𝑵

𝒊=𝟏

= ∑𝝉𝒊

𝑵

𝒊=𝟏
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Momento angolare 
Proviamo a fare le medesime considerazioni esposte all’inizio del paragrafo 

in cui si definisce la quantità di moto, supponendo che però l’oggetto non 

compia un moto traslatorio, bensì ruoti rispetto a un asse. Ci accorgiamo che 

entra in gioco un’altra 

grandezza, legata alla 

distanza tra il punto e 

l’asse, in analogia al caso 

del momento di una forza. 

Definiamo dunque una 

grandezza, anch’essa 

vettoriale, che è l’analogo 

“rotazionale” della 

quantità di moto, e la 

chiamiamo momento 

angolare oppure momento 

della quantità di moto: 

 

 

Consideriamo un punto P fisso in un determinato sistema di riferimento. Dato 

un punto materiale di massa m, avente quantità di moto p, introduciamo 

nuovamente il vettore r applicato in P e con la punta nel punto d’applicazione 

di p. Si definisce momento angolare del punto materiale rispetto al polo fisso 

P, e lo si indica generalmente con L, il vettore così definito: 

𝑳 = 𝒓 × 𝒑 = 𝒓 × (𝑚 𝒗) = 𝑚 𝒓 × 𝒗 

 

L’unità di misura di tale grandezza è il 𝑘𝑔 ∗
𝑚2

𝑠
. 

 

Dato un sistema di N punti materiali e fissato un punto P, il momento angolare 

complessivo del sistema rispetto al punto P si definisce come la somma 

vettoriale dei momenti angolari rispetto a P dei singoli punti materiali: 

𝑳 =  ∑𝑚𝑖𝒓𝒊 × 𝒗𝒊

𝑵

𝒊=𝟏 

= ∑𝑳𝒊

𝑵

𝒊=𝟏
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Forti di queste definizioni, andiamo ad applicarle a sistemi di N punti 

materiali (come i pianeti che orbitano attorno al Sole o le stelle della Galassia, 

date le dimensioni trascurabili di tali corpi rispetto alle enormi distanze che li 

separano) per ricavare interessanti proprietà. Prima, però introduciamo 

un’entità estremamente importante per rappresentare nel suo complesso un 

sistema: il centro di massa. 

Valgono le medesime considerazioni esposte al paragrafo precedente 

riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari. 
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Centro di massa 
 

Dato un sistema di N punti materiali in un determinato sistema di riferimento, 

ciascuno di massa 𝑚𝑖 (1 <= i <= N), la cui posizione rispetto all’origine è 

determinata dai vettori posizione 𝒓𝒊, definiamo centro di massa il punto 

geometrico che, nel medesimo sistema di riferimento, è individuato dal 

seguente vettore: 
 

𝒓𝒄𝒎 =
∑ 𝑚𝑖𝒓𝒊
𝑵
𝒊=𝟏

∑ 𝑚𝑖
𝑵
𝒊=𝟏

 

 

A numeratore compare la 

somma dei prodotti tra la 

massa di ciascun punto 

materiale e il suo vettore 

posizione, a denominatore la 

massa totale del sistema (la 

somma delle masse delle sue 

singole componenti). Il vettore 

𝒓𝒄𝒎 esce dall’origine e punta 

nel centro di massa.  

 

Valgono le medesime considerazioni esposte al paragrafo precedente 

riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari: 

𝑥𝑐𝑚 =
∑ 𝑚𝑖𝑥𝑖
𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 

 

𝑦𝑐𝑚 =
∑ 𝑚𝑖𝑦𝑖
𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

 

 

𝑧𝑐𝑚 =
∑ 𝑚𝑖𝑧𝑖
𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1
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Il centro di massa è un punto geometrico dello spazio: può coincidere con 

uno dei punti materiali del sistema, ma può anche cadere in una regione 

vuota!  

Per esempio, dato un sistema formato solamente da due punti materiali, il 

centro di massa cade sulla congiungente i due punti, più vicino al punto di 

massa maggiore: la sua posizione dà un’idea di come sia distribuita la massa 

all’interno del sistema.  

 

Esempio/esercizio: 

Calcolare la posizione del centro di massa di un sistema di due punti 

materiali A, B posti a distanza d, con 
𝑚𝐴

𝑚𝐵
=  𝛼, rispetto a tali punti.  

 

Scegliamo un sistema di riferimento avente l’asse x in maniera tale da passare 

per entrambi i punti A e B (per due punti passa una e una sola retta…), in 

maniera tale da semplificare i calcoli, e facciamo coincidere l’origine di detto 

sistema con uno dei due punti, per esempio A. Le coordinate di A e di B sono 

dunque le seguenti: 

A = (0,0,0)  ;    B=(d, 0,0) 

Dunque, applicando le tre equazioni scalari precedenti, si ottiene: 

𝑦𝑐𝑚 = 0;    𝑧𝑐𝑚 = 0;     𝑥𝑐𝑚 =
𝑚𝐴 ∗ 0 +𝑚𝐵 ∗ 𝑑

𝑚𝐴 +𝑚𝐵
=

𝑚𝐵 ∗ 𝑑

𝑚𝐴 +𝑚𝐵
=

1

𝛼 + 1
𝑑 

L’ultima scrittura si ottiene dividendo numeratore e denominatore per 𝑚𝐵. 
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Il centro di massa si trova tra i due punti A e B: se α >1, allora 1/(α+1) < ½ e 

dunque 𝑥𝑐𝑚 < ½ d, cioè il centro di massa è più vicino ad A: ciò ha 

perfettamente senso, essendo in questo caso 𝑚𝐴 > 𝑚𝐵                                             

(si ricordi che 
𝑚𝐴

𝑚𝐵
=  𝛼). Viceversa, se α <1, B ha una massa maggiore di A e 

il centro di massa cade più vicino a B. 

 

Esercizio “astronomico”: 

Calcolare la posizione del centro di massa del sistema Terra-Sole, utilizzando 

i dati presenti in tabella e il procedimento dell’esempio precedente, 

schematizzando Terra e Sole come due punti materiali, e commentare il 

risultato ottenuto: dove cade il centro di massa del sistema? [Suggerimento: 

vedi esercizio sopra] 
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Prima di andare avanti… 

 

Come si comporta il ∆ d’una somma? 

∆(𝑎 + 𝑏 + 𝑐 +⋯) = ∆𝑎 + ∆𝑏 + ∆𝑐 +⋯ 

 

 Come si comporta il ∆ di un prodotto?  

∆(𝑎𝑏) = (∆𝑎) ∗ 𝑏 + 𝑎 ∗ (∆𝑏) 

 

Come si comporta il ∆ d’un’espressione del tipo 𝑎 ∗ 𝑏 in cui però a è costante? 

∆(𝑎𝑏) = 𝑎𝑓𝑏𝑓 − 𝑎𝑖𝑏𝑖 = 𝑎𝑏𝑓 − 𝑎𝑏𝑖 = 𝑎(𝑏𝑓 − 𝑏𝑖) = 𝑎∆𝑏 

(𝑖𝑛 𝑞𝑢𝑒𝑠𝑡𝑜 𝑐𝑎𝑠𝑜 ∆𝑎 = 0) 

 

La costante può “entrare e uscire liberamente” dal segno di ∆, e la sua 

variazione è nulla… 
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Secondo principio della dinamica e quantità di 

moto 
 

Consideriamo l’espressione del secondo principio della dinamica e 

rielaboriamola sulla base della definizione delle nuove grandezze appena 

introdotte, in particolare la quantità di moto: 

𝑭 = 𝑚 𝒂 = 𝑚
∆𝒗

∆𝑡
=
∆(𝑚𝒗)

∆𝑡
=
∆𝒑

∆𝑡
 

L’applicazione di una forza su un determinato punto materiale comporta una 

variazione della sua quantità di moto nel tempo. In particolare, il tasso di 

variazione della quantità di moto rispetto al tempo è proprio uguale alla 

risultante di tutte le forze che agiscono sul corpo. Se esprimiamo il secondo 

principio della dinamica in termini di variazione della quantità di moto nel 

tempo, compiamo una generalizzazione del medesimo principio, che si 

applicherà anche a un sistema in cui la massa non resta costante nel tempo, 

ovvero in cui, in generale, 
∆𝑚

∆𝑡
≠ 0: tale contributo non nullo è incluso nel 

termine 
∆𝒑

∆𝑡
. Un esempio molto appropriato di un sistema di questo tipo è un 

razzo con i motori accesi, che espelle materia dagli ugelli dei motori. 
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Urti e conservazione della quantità di moto 
Sicuramente qualcuno di voi avrà giocato a biliardo almeno una volta nella 

vita: questo gioco offre molti spunti di osservazione per quanto concerne le 

interazioni di tipo meccanico tra corpi: le palle da biliardo, appunto, che si 

urtano, o la palla che colpisce la sponda del biliardo. 

Durante l’urto tra due palle da biliardo, su una singola sfera agiscono diverse 

forze: una di queste è la forza di “interazione”, che l’altra sfera applica su di 

essa; la forza di gravità con cui la 

Terra attrae la palla, la reazione 

vincolare che il piano del biliardo 

esercita sulla palla evitando che 

essa sprofondi dentro il tavolo, 

l’attrito tra la palla e il panno e tra 

la palla e l’aria… Trascuriamo gli 

attriti e assumiamo che il piano sia 

perfettamente orizzontale, in 

maniera tale che la reazione 

vincolare del piano e il peso della pallina si controbilancino perfettamente. 

Prima dell’urto, la risultante delle forze che agiscono sulla palla è, per le 

considerazioni fatte, nulla: dunque la pallina sarà in quiete o in moto rettilineo 

uniforme sul panno del biliardo. 

A un certo punto essa urta l’altra palla: supponiamo che lo faccia 

“centralmente” (cioè senza particolari urti “ad effetto”). Le uniche forze alle 

quali saranno sottoposte le due palline sono le forze d’urto. 

Se consideriamo il nostro sistema meccanico complessivamente costituito 

dalle due sferette, allora le forze d’urto sono forze interne al sistema, ovvero 

sono esercitate da un elemento del sistema su un altro elemento del sistema. 

Un sistema i cui elementi sono sottoposti nettamente all’azione di forze 

interne si definisce isolato. 

 

Consideriamo l’urto e chiamiamo le due sfere A e B: per il III principio della 

dinamica, la forza che A esercita su B è uguale e opposta alla forza che B 

esercita su A: 

𝑭𝑨→𝑩 = −𝑭𝑩→𝑨 
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Supponendo che l’urto avvenga in un intervallo di tempo ∆𝑡, moltiplichiamo 

per tale tempo ambo i membri: 

𝑭𝑨→𝑩∆𝑡 =  −𝑭𝑩→𝑨 ∆𝑡 

Ricordando che 𝑭 =
∆𝒑

∆𝑡
, si avrà che: 

∆𝒑𝑩 = −∆𝒑𝑨    →     ∆𝒑𝑩 + ∆𝒑𝑨 = 𝟎 →     ∆(𝒑𝑩 + 𝒑𝑨) = 𝟎  →  ∆𝒑𝒕𝒐𝒕 = 𝟎 

Cioè:  

𝒑𝒕𝒐𝒕𝒊 = 𝒑𝒕𝒐𝒕𝒇 

Abbiamo appena mostrato una proprietà importantissima, che vale in generale 

per tutti i sistemi isolati: la quantità di moto totale (che è un vettore nello 

spazio!!!) si conserva. 

 

Se nell’urto si conserva anche l’energia cinetica totale (la somma delle 

energie cinetiche dei singoli corpi), allora l’urto si definisce elastico. Se l’urto 

ha come esito che le due masse procedano “attaccate”, allora l’urto si 

definisce completamente anelastico. Esiti “intermedi” configurano l’urto 

come parzialmente anelastico. 

Le varietà di urti sono molteplici: proponiamo la soluzione generale nel caso 

di urto elastico monodimensionale, in cui imponiamo che tra prima e dopo 

l’urto si conservino quantità di moto ed energia cinetica complessiva; il fatto 

che l’urto sia monodimensionale permette di utilizzare le relazioni scalari 

senza “perdere informazioni” rispetto all’equazione vettoriale. Indicando per 

mezzo della lettera v le velocità prima dell’urto e con u le velocità dopo l’urto, 

si ha il seguente sistema di due equazioni in due incognite, le u appunto, 

perfettamente risolvibile per mezzo di alcuni semplici passaggi algebrici: 
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N.B.: Le 𝑣𝑖  e le 𝑢𝑖 sono da considerarsi con il loro segno algebrico a seconda 

del verso dei corrispondenti vettori rispetto all’asse su cui si svolge il moto. 

 

{

𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑢1 +𝑚2𝑢2
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 =
1

2
𝑚1𝑢1

2 +
1

2
𝑚2𝑢2

2 

 

{
𝑚1(𝑣1 − 𝑢1) = 𝑚2(𝑢2 − 𝑣2)

𝑚1(𝑣1
2 − 𝑢1

2) = 𝑚2(𝑢2
2 − 𝑣2

2)
 

{
𝑚1(𝑣1 − 𝑢1) = 𝑚2(𝑢2 − 𝑣2)

𝑚1(𝑣1 + 𝑢1)(𝑣1 − 𝑢1) = 𝑚2(𝑢2 + 𝑣2)(𝑢2 − 𝑣2)
 

 

Dividiamo membro a membro la seconda equazione per la prima: 

{
𝑚1(𝑣1 − 𝑢1) = 𝑚2(𝑢2 − 𝑣2)

𝑣1 + 𝑢1 = 𝑢2 + 𝑣2     →    𝑢1 = 𝑢2 + 𝑣2 − 𝑣1
 

 

Sostituiamo l’espressione di u_1 nella prima equazione: 

𝑚1(𝑣1 − 𝑢2 − 𝑣2 + 𝑣1) = 𝑚2(𝑢2 − 𝑣2) 

 

E risolviamo per 𝑢2: 

𝑢2 =
(𝑚2 −𝑚1)𝑣2 + 2𝑚1𝑣1

𝑚1 +𝑚2
 

 

È facile adesso ricavare 𝑢1 sostituendo tale formula nell’espressione di 𝑢1: 

𝑢1 =
(𝑚1 −𝑚2)𝑣1 + 2𝑚2𝑣2

𝑚1 +𝑚2
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Se, per esempio, 𝑚2 ≫ 𝑚1, allora le formule si possono così approssimare 

(l’approssimazione è tanto migliore quanto più 
𝑚2

𝑚1
 è un numero grande): 

𝑢2 ≈ 𝑣2 

𝑢1 ≈ −𝑣1 + 2𝑣2 

 

Tali relazioni sono ricavate dividendo numeratore e denominatore di ogni 

espressione per 𝑚2 e trascurando i termini pari a 𝑚1/𝑚2, essendo molto 

piccoli. 

 

Quest’ultima soluzione mostra che la massa considerevolmente più grande 

procede sostanzialmente indisturbata, mentre il corpo di massa molto piccola 

subisce una notevole variazione di velocità se il corpo con cui impatta è molto 

veloce, acquisendo molta più energia di quanta ne possedeva inizialmente, 

senza tuttavia “sottrarne” una quantità sensibile al corpo più massivo. Un 

principio concettualmente simile a quello di un urto elastico fra un corpo 

molto massivo e uno di massa estremamente più piccola è quello che sta alla 

base dell’effetto fionda 

gravitazionale subito da 

un veicolo spaziale: 

esso utilizza la gravità di 

un pianeta per alterare il 

percorso e la velocità di 

tale veicolo, ed è 

comunemente usata per 

voli indirizzati verso i 

pianeti esterni, il cui 

arrivo a destinazione 

sarebbe altrimenti 

proibitivo per costi e 

tempi. Nel sistema di riferimento del Sole, la traiettoria del veicolo che 

usufruisce della fionda gravitazionale è indistinguibile da quella di una 

pallina che ne ultra un’altra, più pesante, in moto, e rimbalza con velocità 

maggiore in modulo di quella iniziale. 
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Quantità di moto e centro di massa 
Se riprendiamo la definizione del vettore posizione del centro di massa di un 

sistema di N punti materiali ed eseguiamo alcuni passaggi algebrici, 

otteniamo la corrispondente velocità con cui si muove il centro di massa nel 

riferimento scelto: 

𝒓𝒄𝒎 =
∑ 𝑚𝑖𝒓𝒊
𝑵
𝒊=𝟏

∑ 𝑚𝑖
𝑵
𝒊=𝟏

 

∆𝒓𝒄𝒎 =
∑ 𝑚𝑖∆𝒓𝒊
𝑵
𝒊=𝟏

∑ 𝑚𝑖
𝑵
𝒊=𝟏

 

∆𝒓𝒄𝒎
∆𝑡

=
∑ 𝑚𝑖

∆𝒓𝒊
∆𝑡

𝑵
𝒊=𝟏

∑ 𝑚𝑖
𝑵
𝒊=𝟏

               →                  𝒗𝒄𝒎 = 
∑ 𝑚𝑖𝒗𝒊
𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1 

 

 

Cerchiamo di scrivere la quantità di moto di un sistema in termini di 𝑣𝑐𝑚: 

𝑷𝒔𝒊𝒔 = ∑𝑚𝑖𝒗𝒊

𝑵

𝒊=𝟏 

= (∑𝑚𝑖

𝑵

𝒊=𝟏 

)𝒗𝒄𝒎 = 𝑀𝑡𝑜𝑡𝒗𝒄𝒎 

La quantità di moto di un sistema di punti materiali è data dal prodotto della 

somma delle masse dei punti e della velocità del centro di massa del sistema. 

 

Continuiamo a rielaborare la precedente scrittura, nell’ipotesi che la massa 

del sistema non vari (sistema chiuso): 

 

∆𝑷𝒔𝒊𝒔 = 𝑀𝑡𝑜𝑡∆𝒗𝒄𝒎     →       
∆𝑷𝒔𝒊𝒔
∆𝑡

=
𝑀𝑡𝑜𝑡∆𝒗𝒄𝒎

∆𝑡
  

 

𝐷𝑎 𝑐𝑢𝑖    𝑭𝒕𝒐𝒕 = 𝑀𝑡𝑜𝑡𝒂𝒄𝒎   
 

Dove con 𝑭𝒕𝒐𝒕  indichiamo la somma vettoriale di tutte le forze che agiscono 

sugli elementi del sistema come se fossero applicate tutte nel centro di massa, 

e con 𝒂𝒄𝒎  indichiamo la corrispondente accelerazione con cui si muove il 

centro di massa nel sistema di riferimento scelto. 
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Il vettore 𝑭𝒕𝒐𝒕 è dato dalla 

sommatoria delle forze 

esterne e delle forze 

interne che agiscono sugli 

elementi di un sistema: 

ma, per il III principio 

della dinamica, le forze 

interne si presentano a 

coppie uguali e opposte: 

quando immaginiamo di 

applicarle al centro di massa, esse si cancellano a vicenda, facendo 

“sopravvivere” esclusivamente la risultante delle forze esterne, quindi: 

 

𝑭𝒕𝒐𝒕 = ∑𝑭𝒊𝑬𝑿𝑻

𝑵

𝒊=𝟏

 

 

∑𝑭𝒊𝑬𝑿𝑻

𝑵

𝒊=𝟏

= 𝑀𝑡𝑜𝑡𝒂𝒄𝒎 

 

Il prodotto della massa totale del sistema per l’accelerazione del suo centro 

di massa è pari alla risultante delle forze esterne che agiscono sugli elementi 

del sistema. 

 

Un’importante conseguenza di queste relazioni appena ricavate si ha per i 

sistemi isolati, in cui anche ∑ 𝑭𝒊𝑬𝑿𝑻
𝑵
𝒊=𝟏 =0. Per questi sistemi si ha che 𝒂𝒄𝒎  = 

0, cioè 𝒗𝒄𝒎  è costante nel tempo: le singole componenti del sistema possono 

avere un moto complicatissimo, ma se il sistema è isolato, il loro centro di 

massa si muoverà di moto rettilineo e uniforme.  

 

 

Facciamo un ultimo esempio che riassuma quanto ricavato finora 

(comprendendo anche la legge di conservazione della quantità di moto totale). 
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Supponiamo di porre due 

oggetti (assimilabili a punti 

materiali) molto vicini tra loro, 

in maniera tale che siano 

separati esclusivamente da una 

piccola carica esplosiva di 

massa trascurabile. 

 

Trascuriamo qualsiasi forza esterna. Inizialmente ciascuna delle componenti 

è ferma in un opportuno sistema di riferimento: ciò vuol dire che la quantità 

di moto complessiva in tale sistema è nulla. Facciamo dunque esplodere la 

carica interposta: il sistema oggetti + carica è isolato (le forze derivanti 

dall’esplosione sono interne): la quantità di moto complessiva si deve 

conservare, ossia, in questo caso, deve rimanere nulla. 

 

Ma allora la velocità del centro di massa si manterrà nulla durante tutto il 

processo; attenzione: i due oggetti si allontaneranno in conseguenza 

dell’esplosione, ma il centro di massa rimarrà fermo! 
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Conservazione del momento angolare 
Consideriamo, anche in questo caso, un sistema composto da N punti 

materiali di massa 𝑚𝑖  e scegliamo un determinato sistema di riferimento in 

cui questi punti sono individuati dai vettori posizione 𝒓𝒊 e posseggono 

velocità 𝒗𝒊. Fissiamo inoltre un punto P, individuato dal vettore uscente 

dall’origine 𝒓𝑷 . Indichiamo con la lettera F (con opportuni pedici) le varie 

forze che agiscono su tali punti. Il nostro obbiettivo è scrivere il momento 

complessivo delle forze rispetto a P in maniera tale da mettere in luce una 

legge analoga alla conservazione della quantità di moto, ma che coinvolge il 

momento angolare. 

 

𝝉 =  ∑(𝒓𝒊 −

𝑁

𝑖=1

𝒓𝑷) × 𝑭𝒊 = ∑(𝒓𝒊 −

𝑁

𝑖=1

𝒓𝑷) × (𝑭𝒊𝒊𝒏𝒕 + 𝑭𝒊𝒆𝒙𝒕) 

 

L’ultimo passaggio deriva dal fatto che la forza complessiva che agisce sul 

punto i-esimo ha due componenti: la risultante delle forze interne che agisce 

sul medesimo punto, e la risultante delle forze esterne (sempre sul medesimo 

punto). Adesso sfruttiamo la distributività del prodotto vettoriale 

𝝉 =∑(𝒓𝒊 − 𝒓𝑷) × 𝑭𝒊𝒊𝒏𝒕

𝑁

𝑖=1

+∑(𝒓𝒊 − 𝒓𝑷) × 𝑭𝒊𝒆𝒙𝒕

𝑁

𝑖=1

 

Per il III principio della dinamica, il primo termine è nullo: infatti se una 

determinata forza interna genera un momento pari a 𝝉𝒊, ve ne sarà un’altra, 

uguale in modulo ma in verso opposto alla prima, che genererà un momento 

pari a −𝝉𝒊.  

 



Bignamino di Astronomia 

   289 

 

Di conseguenza:  

𝝉 =  ∑(𝒓𝒊 − 𝒓𝒑) × 𝑭𝒊𝒆𝒙𝒕

𝑁

𝑖=1

= 𝝉𝒆𝒙𝒕 

 

Nella determinazione del momento risultante di tutte le forze che agiscono su 

un sistema di punti materiali, il contributo “netto” è dovuto alle forze esterne 

al sistema. 

 

Riprendiamo in esame la prima scrittura per 𝜏, sostituendo però il simbolo 𝜏 

con 𝜏𝑒𝑥𝑡(abbiamo visto che sono uguali): 

 

𝝉𝒆𝒙𝒕 = ∑(𝒓𝒊 −

𝑁

𝑖=1

𝒓𝑷) × 𝑭𝒊 

 

E ricordando il II principio della dinamica formulato in termini di variazione 

della quantità di moto, riarrangiamo l’espressione seguente (anche sfruttando 

le definizioni delle grandezze che introdurremo): 

 

𝝉𝒆𝒙𝒕 = ∑(𝒓𝒊 −

𝑁

𝑖=1

𝒓𝑷) × 𝑭𝒊 =∑(𝒓𝒊 − 𝒓𝑷) ×

𝑁

𝑖=1

(
∆𝒑𝒊
∆𝑡
) = 

= ∑(𝒓𝒊 − 𝒓𝑷) × (
∆(𝑚𝑖𝒗𝒊)

∆𝑡
)

𝑁

𝑖=1

= ∑(𝒓𝒊 − 𝒓𝑷)

𝑁

𝑖=1

×𝑚𝑖 (
∆𝒗𝒊
∆𝑡
) 

 

Adesso facciamo un passaggio algebrico che apparentemente complicherà la 

scrittura precedente, ma che ci sarà molto utile: come avrete sicuramente 

imparato leggendo il paragrafo relativo al prodotto vettoriale, il prodotto 

vettoriale di due vettori paralleli è nullo: di conseguenza anche il prodotto 
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vettoriale di un vettore per se stesso è nullo. Quindi, se per esempio scegliamo 

il vettore 𝒗𝒊, allora 𝒗𝒊  × 𝒗𝒊 = 𝟎, e l’aggiunta di questa espressione all’interno 

della sommatoria non altera la somma. 

 

𝝉𝒆𝒙𝒕 = ∑(𝒓𝒊 − 𝒓𝑷)

𝑁

𝑖=1

×𝑚𝑖 (
∆𝒗𝒊
∆𝑡
) = 

= ∑𝑚𝑖 [𝒗𝒊 × 𝒗𝒊 + (𝒓𝒊 − 𝒓𝑷) × (
∆𝒗𝒊
∆𝑡
)]

𝑁

𝑖=1

 

 

Sfruttiamo la definizione di 𝒗𝒊 ∶=
∆(𝒓𝒊−𝒓𝑷)

∆𝑡
 per sostituirla nell’espressione 

precedente: 

𝝉𝒆𝒙𝒕 =  ∑𝑚𝑖 [(
∆(𝒓𝒊 − 𝒓𝑷)

∆𝑡
) × 𝒗𝒊 + (𝒓𝒊 − 𝒓𝑷) × (

∆𝒗𝒊
∆𝑡
)]

𝑁

𝑖=1

 

Ma, tenendo a mente il prerequisito menzionato all’inizio di questo 

documento (∆ d’un prodotto), ci accorgiamo che il termine dentro parentesi 

quadra equivale a  

∆[(𝒓𝒊 − 𝒓𝒑) × 𝒗𝒊]

∆𝑡
 

𝝉𝒆𝒙𝒕 =∑𝑚𝑖

𝑁

𝑖=1

∆[(𝒓𝒊 − 𝒓𝒑) × 𝒗𝒊]

∆𝑡
=  ∑

∆[𝑚𝑖 (𝒓𝒊 − 𝒓𝒑) × 𝒗𝒊]

∆𝑡

𝑁

𝑖=1

 

 

Essendo l’ultimo passaggio motivato dal fatto che le 𝑚𝑖 sono delle costanti. 

 

Vi sarete certamente accorti che il termine a numeratore è uguale a ∆𝑳𝒊, cioè 

la variazione del momento angolare rispetto al polo fisso P della particella i-

esima, dunque scriviamo: 
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𝝉𝒆𝒙𝒕 =∑
∆𝑳𝒊
∆𝑡

𝑁

𝑖=1

=
∆∑ 𝑳𝒊

𝑵
𝒊=𝟏

∆𝑡
=
∆𝑳𝒕𝒐𝒕
∆𝑡

 

 

Siamo giunti a un risultato importantissimo: la risultante dei momenti delle 

forze esterne che agiscono su un sistema di punti materiali è pari al tasso di 

variazione nel tempo del momento angolare del sistema: fare momento 

torcente equivale a modificare il momento angolare! 

 

Non solo: se le forze esterne che agiscono sugli elementi del sistema danno 

un momento risultante nullo, allora la variazione del momento angolare 

complessivo del sistema è nulla, pertanto ciò significa che il momento 

angolare totale si conserva. 

 

 

Legge della conservazione del momento angolare: se la risultante dei 

momenti delle forze esterne che agiscono su un sistema rispetto a un polo 

fisso è nulla, allora il momento angolare totale del sistema si mantiene 

costante nel tempo, ossia si conserva. 

 

 

Esempio: supponete di avere un dispositivo formato da due sferette unite 

attraverso un filo rigido, quest’ultimo munito di un meccanismo interno 

capace di farlo accorciare: inizialmente le sfere ruotano con una certa 

velocità. Supponete ora di azionare il meccanismo interno… Le sfere, più 

vicine, cominceranno a ruotare più velocemente: il momento angolare del 

sistema si deve infatti conservare, ma, dal momento che la massa delle sfere 

resta costante e si accorcia la loro distanza, la loro velocità deve 

necessariamente aumentare! Uguali considerazioni (con molte 

semplificazioni) si applicano a un sistema binario formato da due stelle: in 

questo caso, il meccanismo interno corrisponde alla gravità con cui le 

componenti interagiscono… 
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Le due equazioni ricavate in questa sezione, una all’inizio e l’altra adesso, 

sono di importanza fondamentale nella meccanica, e le riportiamo qui: 

 

 

{
𝑭𝒆𝒙𝒕𝒔𝒊𝒔𝒕𝒆𝒎𝒂 =

∆𝑷𝒔𝒊𝒔𝒕𝒆𝒎𝒂
∆𝑡

𝝉𝒆𝒙𝒕𝒔𝒊𝒔𝒕𝒆𝒎𝒂 =
∆𝑳𝒔𝒊𝒔𝒕𝒆𝒎𝒂

∆𝑡

 

 

 

Esse sono chiamate equazioni cardinali della meccanica, e, a ben vedere, 

hanno un aspetto molto simile tra loro: ecco, perché, nel definire il momento 

angolare, avevamo usato l’espressione analogo rotazionale della quantità di 

moto… 
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In generale molte equazioni riferite a moti rotazionali sono simili alle 

corrispondenti equazioni per moti traslazionali; ecco uno schema che tenta di 

riassumere i parallelismi: 

 

 TRASLAZIONE ROTAZIONE 

 

 

 

 

GRANDEZZE 

“analoghe” 

 

Velocità traslazionale 

 

 

Velocità angolare 

 

Quantità di moto 

 

 

Momento angolare 

 

Forza 

 

 

Momento di una forza 

 

Massa inerziale 

 

Momento d’inerzia 

(vedremo tra poco) 
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Momento angolare e centro di massa 
 

Vogliamo calcolare il momento angolare di un sistema di punti materiali, 

scegliendo però come polo fisso il centro di massa del sistema. Utilizziamo 

le medesime notazioni per le grandezze fisiche introdotte già da qualche 

paragrafo: 

 

𝑳𝑪𝑴 =∑𝑚𝑖(𝒓𝒊 − 𝒓𝑪𝑴) × 𝒗𝒊

𝑁

𝑖=1

= ∑𝑚𝑖𝒓𝒊 × 𝒗𝒊

𝑁

𝑖=1

−∑𝑚𝑖𝒓𝑪𝑴 × 𝒗𝒊

𝑁

𝑖=1

 

La prima sommatoria equivale al momento angolare del sistema calcolato 

scegliendo come polo fisso l’origine del sistema di riferimento, mentre 

continuiamo per riarrangiare il secondo termine: 

 

𝑳𝑪𝑴 = 𝑳𝑶 − 𝒓𝑪𝑴 ×∑𝑚𝑖𝒗𝒊

𝑁

𝑖=1

= 𝑳𝑶 − 𝒓𝑪𝑴 × 𝑷𝒕𝒐𝒕 = 𝑳𝑶 − 𝒓𝑪𝑴 ×𝑀𝒗𝑪𝑴 

 

𝑳𝑶 = 𝑳𝑪𝑴 +𝑀𝑡𝑜𝑡𝒓𝑪𝑴 × 𝒗𝑪𝑴 

 

Il momento angolare di un sistema rispetto all’origine del s.r. scelto è uguale 

al momento angolare del sistema valutato rispetto al centro di massa più un 

termine, uguale al momento angolare rispetto all’origine di un punto 

materiale che occupa il centro di massa (e si muove con la sua velocità) e che 

possiede una massa uguale a tutta la massa del sistema. 
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Energia cinetica e centro di massa 
 

Obiettivo di questo paragrafo è il calcolo dell’energia cinetica del solito 

sistema di punti materiali: cercheremo anche questa volta di correlare tale 

grandezza alle proprietà del centro di massa: l’energia cinetica del sistema, 

essendo l’energia una grandezza additiva, è pari alla somma delle energie 

cinetiche delle sue singole componenti: 

𝐾 = ∑
1

2
𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

 

Le relazioni che definiscono posizione e velocità del centro di massa sono 

relazioni vettoriali… cerchiamo di sfruttare le proprietà dei vettori per poterci 

ricondurre a tali espressioni; ricordiamo che, come visto nel capitolo 

riguardante il prodotto scalare, il quadrato del modulo di un vettore è pari al 

prodotto scalare del vettore per se stesso: quindi possiamo scrivere 

l’espressione precedente mettendo in luce questa proprietà: 

𝐾 =  ∑
1

2
𝑚𝑖𝒗𝒊 ∗ 𝒗𝒊

𝑁

𝑖=1

= ∑
1

2
𝑚𝑖(𝒗𝑪𝑴 + 𝒗𝒊

′) ∗ (𝒗𝑪𝑴 + 𝒗𝒊
′)

𝑁

𝑖=1

 

Abbiamo operato la sostituzione 𝒗𝒊 = 𝒗𝑪𝑴 + 𝒗𝒊
′ perché la velocità della 

particella i-esima nel sistema di riferimento esterno è pari alla velocità della 

medesima particella nel sistema di riferimento del centro di massa (𝒗𝒊
′) più la 

velocità del centro di massa stesso (𝒗𝑪𝑴). Continuiamo a svolgere i passaggi 

algebrici ricordando le proprietà del prodotto scalare: 

 

𝐾 =  ∑
1

2
𝑚𝑖𝒗𝑪𝑴 ∗ 𝒗𝑪𝑴

𝑁

𝑖=1

+∑
1

2
𝑚𝑖𝒗𝑪𝑴 ∗ 𝒗𝒊′

𝑁

𝑖=1

+∑
1

2
𝑚𝑖𝒗𝒊

′ ∗ 𝒗𝑪𝑴

𝑁

𝑖=1

+∑
1

2
𝑚𝑖𝒗𝒊

′ ∗ 𝒗𝒊
′

𝑁

𝑖=1

 

 

𝐾 =
1

2
𝑣𝐶𝑀
2 ∑𝑚𝑖

𝑁

𝑖=1

+ 𝒗𝑪𝑴 ∗∑𝑚𝑖𝒗𝒊′

𝑁

𝑖=1

+∑
1

2
𝑚𝑖𝑣𝑖

′2

𝑁

𝑖=1
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Il secondo termine di quest’espressione è nullo: infatti, nel sistema di 

riferimento con origine nel centro di massa, la velocità del centro di massa è 

nulla, ed è inoltre così definita:  

 

𝒗𝑪𝑴 =
∑ 𝑚𝑖𝒗𝒊′
𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

   → 𝒗𝑪𝑴 = 𝟎   →   ∑𝑚𝑖𝒗𝒊′

𝑁

𝑖=1

= 𝟎 

 

Il terzo termine è uguale all’energia cinetica complessiva del sistema valutata 

nel sistema di riferimento con origine nel centro di massa: chiameremo tale 

grandezza 𝐾𝐶𝑀. Il termine ∑ 𝑚𝑖
𝑁
𝑖=1  è pari alla massa totale del sistema: quindi 

 

𝐾 = 𝐾𝐶𝑀 +
1

2
𝑀𝑣𝐶𝑀

2  

 

L’energia cinetica di un sistema di punti materiali in un sistema di riferimento 

in cui il centro di massa possiede una certa velocità, è uguale all’energia 

cinetica del sistema valutata nel sistema di riferimento del centro di massa 

più un termine, uguale all’energia cinetica di un punto materiale avente 

modulo della velocità pari a quello della v. del centro di massa e massa pari 

alla massa complessiva del sistema. 
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Quantità di moto e centro di massa 

(considerazioni finali) 
Riprendiamo l’equazione:  

𝑷𝒕𝒐𝒕 = 𝑀𝒗𝑪𝑴 

Nel sistema di riferimento del centro di massa 𝒗𝑪𝑴 = 0, dunque:  

𝑷𝒕𝒐𝒕𝑪𝑴 = 𝟎 

La quantità di moto complessiva nel sistema di riferimento del centro di 

massa è nulla. 

 

Come avrete notato, nel sistema di riferimento del centro di massa tutte le 

equazioni scritte in precedenza assumono un aspetto molto semplice; ciò lo 

rende un sistema “privilegiato” per descrivere il moto di una serie di oggetti, 

attraverso relazioni più semplici ed eleganti. 

 

 

 

Sistemi a due corpi 
 

Un caso importante di sistemi di punti materiali sono i sistemi che contano 

solo due componenti, i sistemi a due corpi, in particolare quando i due corpi 

si possono considerare soggetti esclusivamente alla loro mutua interazione 

(sistemi isolati e forze interne). Vedremo che una grandezza assai comoda per 

esprimere alcune proprietà di tali sistemi è la massa ridotta, che definiremo 

al momento opportuno. 

Se chiamiamo i due corpi 1 e 2, allora per un osservatore inerziale saranno 

vere le due seguenti equazioni (II principio della dinamica):  

𝑭𝟏→𝟐 = 𝑚2𝒂𝟐 

𝑭𝟐→𝟏 = 𝑚1𝒂𝟏 
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Ma, per il terzo principio della dinamica, si ha che 𝑭𝟏→𝟐 = −𝑭𝟐→𝟏 = 𝑭, 

perciò: 

𝑭 = 𝑚2𝒂𝟐 

−𝑭 = 𝑚1𝒂𝟏 

Pertanto, sommando membro a membro le precedenti equazioni, otteniamo 

che  

𝑚2𝒂𝟐 = −𝑚1𝒂𝟏     →     𝒂𝟐 = −
𝑚1

𝑚2
𝒂𝟏 

Adesso determiniamo l’accelerazione relativa dei due corpi, ossia il vettore 

𝒂𝟐 − 𝒂𝟏: 

𝒂 = 𝒂𝟐 − 𝒂𝟏 = −
𝑚1

𝑚2
𝒂𝟏 − 𝒂𝟏 = −𝒂𝟏 (1 +

𝑚1

𝑚2
) = −𝒂𝟏 (

𝑚2 +𝑚1

𝑚2
) 

Moltiplichiamo e dividiamo per 𝑚1: il nostro obbiettivo è far comparire F: 

𝒂 = −𝒂𝟏
𝑚1

𝑚1
(
𝑚2 +𝑚1

𝑚2
) =

𝑭
𝑚1𝑚2
𝑚2 +𝑚1

 

 

Se eseguite l’analisi dimensionale del denominatore di quest’espressione, vi 

accorgerete che le sue dimensioni sono quelle di una massa. A tale grandezza 

si dà il nome di massa ridotta del sistema, poiché il suo valore è minore di 

quello di entrambe le masse (provate a dimostrarlo autonomamente). Se le 

masse hanno valore molto diverso tra loro (si pensi al sistema Terra-Sole), la 

massa ridotta assume un valore molto prossimo a quello della massa più 

piccola (la massa della Terra in questo caso). La massa ridotta si indica con il 

simbolo 𝜇, per cui: 

𝑭 =  𝜇𝒂 

 

A ben vedere, siamo riusciti a semplificare il problema grazie all’introduzione 

di 𝜇: l’accelerazione relativa di una massa rispetto all’altra è pari a quella che 

in un sistema di riferimento inerziale avrebbe un solo corpo di massa pari alla 

massa ridotta del sistema, su cui agisce una forza pari alla forza d’interazione 

reciproca degli elementi del sistema. 
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Così, in un sistema binario, le due stelle si attraggono reciprocamente con una 

forza pari a: 

𝑭 = −𝐺
𝑚1𝑚2

𝑟2
𝒓̂ 

Se le due stelle hanno masse confrontabili, non possiamo procedere con le 

varie semplificazioni già viste, ma dobbiamo applicare la relazione scritta 

sopra. 

Dunque, vista la bontà dell’ipotesi di isolamento del sistema, si ha, per la 

relazione appena trovata: 

 

𝜇 𝒂 =  −𝐺
𝑚1𝑚2

𝑟2
𝒓̂          𝑐𝑜𝑛  𝜇 =

𝑚1𝑚2

𝑚1 +𝑚2
 

 

Adesso poniamoci nel sistema di riferimento del centro di massa del sistema 

a due corpi: dev’essere, come già visto in precedenza: 

 

𝑚1𝒗𝟏 +𝑚2𝒗𝟐 = 𝟎     →      𝑚1𝒗𝟏 = −𝑚2𝒗𝟐   →     𝒗𝟏 = −
𝑚2

𝑚1
𝒗𝟐 
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Nel sistema del centro di massa, i vettori 𝒗𝟏 𝑒 𝒗𝟐 sono paralleli. La velocità 

relativa tra i due oggetti sarà: 

 

𝒗𝟐 − 𝒗𝟏 = 𝒗 = 𝒗𝟐 +
𝑚2

𝑚1
𝒗𝟐 = (1 +

𝑚2

𝑚1
)𝒗𝟐 =

𝑚2

𝜇
𝒗𝟐 

 

Determiniamo l’energia cinetica del sistema in questo sistema di riferimento: 

 

𝐾𝐶𝑀 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 =
1

2
𝑚1 (

𝑚2
2

𝑚1
2)𝑣2

2 +
1

2
𝑚2𝑣2

2 = 

=
1

2

𝑚2
2

𝑚1
𝑣2
2 +

1

2
𝑚2𝑣2

2 =
1

2
𝑚2𝑣2

2 (
𝑚2

𝑚1
+ 1) 

 

Essendo 𝑚2 =
𝑣𝜇

𝑣2
 abbiamo che:  

 

𝐾𝐶𝑀 =
1

2

𝑣𝜇

𝑣2
 𝑣2
2 (
𝑚2

𝑚1
+ 1) =

1

2
𝑣𝜇 𝑣2 (1 +

𝑚2

𝑚1
) 

 

Il prodotto degli ultimi due termini è ancora uguale a 𝑣, perciò: 

 

𝐾𝐶𝑀 =
1

2
𝜇𝑣2 

 

L’energia cinetica nel sistema di riferimento del centro di massa di un sistema 

a due corpi è uguale all’energia cinetica di un corpo singolo che si muove 

con una velocità di modulo pari alla velocità relativa dei due corpi e avente 

massa pari alla massa ridotta del sistema. 
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Un nuovo modo di vedere la 2ª legge di Keplero 
 

Consideriamo un pianeta che orbita attorno al Sole: la seconda legge di 

Keplero afferma che il raggio vettore dell’orbita spazza aree uguali in tempi 

uguali. Questa legge fu ricavata da Keplero sulla base delle sue osservazioni, 

ma si spiega grazie alla legge di conservazione del momento angolare.  

Scegliamo un sistema di riferimento con origine nel Sole, in cui il pianeta (di 

massa m trascurabile rispetto al Sole) in un determinato punto dell’orbita è 

individuato dal raggio vettore r e possiede una velocità pari a v. Dev’essere 

allora  

∆𝒓

∆𝑡
= 𝒗     →    ∆𝒓 = 𝒗 ∆𝑡 

A quanto corrisponde l’area spazzata dal raggio vettore nel tempo ∆𝑡? È pari 

alla metà del parallelogramma che ha per lati ∆𝒓 e r, quindi equivale alla metà 

del modulo del prodotto vettoriale di questi ultimi due vettori: 

𝐴 =
|𝒓 × ∆𝒓|

2
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𝐴 =
|𝒓 × 𝒗|∆𝑡

2
 

𝐴

∆𝑡
=
𝑚

𝑚

|𝒓 × 𝒗|

2
=
|𝑚𝒓 × 𝒗|

2𝑚
=
|𝑳|

2𝑚
  

Possiamo assumere che il sistema Sole + pianeta non sia sottoposto all’azione 

di forze esterne rilevanti. Quindi L si conserva, ossia in particolare 

|L|=costante. Ma allora 
𝐴

∆𝑡
 è costante, cioè le aree spazzate dal raggio vettore 

nel medesimo tempo sono uguali. 

Applichiamo la legge di conservazione del momento angolare al perielio e 

all’afelio: qui il raggio vettore è perpendicolare alla direzione della velocità e 

ha modulo, rispettivamente 𝑑𝐴 𝑒 𝑑𝑃: per cui possiamo adoperare con facilità 

le relazioni scalari  

𝐿𝐴 = 𝐿𝑃 

𝑚𝑣𝐴𝑑𝐴 = 𝑚𝑣𝑃𝑑𝑃 

𝑣𝐴𝑑𝐴 = 𝑣𝑃𝑑𝑃 

Per posizioni generiche sull’orbita, vale ancora la legge di conservazione del 

momento angolare, ma va correttamente scritta adoperando la relazione 

vettoriale: infatti non è generalmente vero che il raggio vettore sia 

perpendicolare alla velocità! 
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Il vettore velocità angolare 
 

 

Il titolo di questo paragrafo potrebbe, a prima vista, indurre qualcuno in 

confusione: la velocità angolare è stata precedentemente definita come uno 

scalare… perché adesso è accompagnata nel titolo dalla parola vettore?  

Supponiamo che un amico vi dica: “Ho posto in rotazione una trottola sul 

tavolo e adesso ruota con una velocità angolare di 5 rad/s”. Provate a 

visualizzare nella vostra mente questa trottola: il suo asse potrà essere 

inclinato di 20°, 5°, 14°, ecc., il vostro amico non l’ha specificato; la trottola 

potrà ruotare in senso orario o antiorario vista dall’alto: l’importante è che 

ruoti a 5 rad/s… 

Un modo per quantificare sia l’ampiezza 

dell’angolo percorso, sia la direzione 

dell’asse di rotazione e il verso di 

quest’ultima in un determinato sistema di 

riferimento sta nel modificare lievemente il 

concetto di velocità angolare scalare e 

sostituirlo con un vettore. Questo vettore ha 

modulo pari alla velocità angolare scalare, 

direzione 

parallela 

all’asse di 

rotazione 

e verso così determinabile: avvolgete le 

quattro dita opposte al pollice della mano 

destra nel verso della rotazione, come per 

fare un “OK” con la mano: il pollice 

punterà nel verso del vettore velocità 

angolare.  

 

Indichiamo tale vettore con 𝝎. 
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Per esempio, in un moto circolare uniforme che si svolge sul piano del foglio 

in senso antiorario, il vettore velocità angolare è costante, esce 

perpendicolarmente dal foglio e punta verso il lettore. 

Chiaramente possiamo riscrivere le relazioni cinematiche relative al moto 

circolare attraverso tale vettore; per esempio, la velocità tangenziale è 

esprimibile tramite la seguente formula, dove r è il raggio vettore 

(congiungente centro-punto)  

𝒗 =  𝝎 × 𝒓 
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Momento d’inerzia 
 

L’esperienza mostra che è più difficile, a parità di momento torcente                  

(= momento di una forza) applicato, mettere in rotazione attorno a un asse 

fisso un oggetto che: 

1) Ha massa maggiore di un altro, a parità di distanza dall’asse; 

2) Ha distanza dall’asse maggiore di un altro, a parità di massa. 

La medesima difficoltà (con uguali caratteristiche) si riscontra quando 

vogliamo fermare un oggetto in rotazione. Il corpo tende a mantenere, in 

assenza di interventi esterni, la propria velocità angolare inalterata. Possiamo 

riferirci a tale tendenza come a una sorta di inerzia rotazionale. 

Esiste una grandezza fisica che quantifichi l’inerzia posseduta da un corpo? 

Nel caso del moto traslatorio, la grandezza caratteristica è la massa inerziale: 

un corpo con una maggiore massa inerziale rispetto a un altro tenderà, a parità 

di forza applicata, a modificare meno la sua velocità. 

In regime rotatorio, una grandezza analoga esiste ed è chiamata momento 

d’inerzia. 

 

Il momento d’inerzia di un punto materiale di massa m rispetto a un asse 

posto a distanza r è una grandezza scalare così definita: 

𝐼 = 𝑚𝑟2 

 

 
 

L’unità di misura di tale grandezza è il 𝑘𝑔 ∗ 𝑚2 . 
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Il momento d’inerzia è una grandezza additiva: il momento d’inerzia di un 

corpo è pari alla somma dei momenti d’inerzia delle sue componenti. Dunque, 

per un sistema di N punti materiali aventi massa m_i e distanze r_i da un 

determinato asse fisso, si ha: 

  

𝐼𝑡𝑜𝑡 =∑𝑚𝑖𝑟𝑖
2

𝑁

𝑖=1
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Corpo rigido 
 

Immaginate un corpo con la seguente proprietà: i suoi punti non modificano 

mai la loro posizione reciproca. In altre parole, il corpo è un corpo rigido. 

Anche per un corpo rigido valgono le equazioni cardinali scritte sopra: 

possiamo infatti considerarlo come un insieme di infiniti punti materiali di 

massa infinitesima.  

 

Chiaramente, se poniamo in rotazione un corpo di questo genere attorno a un 

asse, ogni punto descriverà una traiettoria circolare, e, per via della rigidità, il 

moto di tutti i punti sarà caratterizzato dall’avere lo stesso vettore velocità 

angolare: perciò, possiamo riferirci in generale al vettore velocità angolare 

del corpo rigido. 

Vogliamo trovare la relazione che lega la velocità angolare di un corpo rigido 

con il suo momento angolare, e poi utilizzare una delle equazioni cardinali 

della meccanica: otterremo un importante risultato, che spiega anche 

numerose esperienze quotidiane… 

 

Supponiamo di avere un corpo rigido 

ruotante con velocità angolare 

istantanea 𝝎 attorno a un asse fisso. 

Scegliamo l’origine del sistema di 

riferimento sull’asse di rotazione, e 

l’asse z coincidente con l’asse di 

rotazione. Immaginiamo di 

suddividere il corpo rigido in 

un’infinità di punti materiali, ciascuno 

di massa (infinitesima) 𝑚𝑖. 

 

Chiamiamo 𝒓𝒊 il vettore che 

congiunge l’origine con il punto i-

esimo, mentre 𝒅𝒊 il vettore che 

congiunge perpendicolarmente l’asse 

col punto i-esimo (vedi figura). Sia 

𝒛𝒊 la quota rispetto all’origine del 

punto i-esimo.  
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Si ha: 

 

𝑳 =∑𝑚𝑖𝒓𝒊 × 𝒗𝒊

𝑁

𝑖=1

 

 

Valgono le seguenti relazioni, che sostituiremo nella formula di 𝑳: 

𝒓𝒊 = 𝒛𝒊 + 𝒅𝒊         𝒗𝒊 = 𝝎× 𝒅𝒊 

𝑳 =  ∑𝑚𝑖(𝒛𝒊 + 𝒅𝒊) × (𝝎 × 𝒅𝒊)

𝑁

𝑖=1

= 

=∑𝑚𝑖𝒛𝒊 × (𝝎 ×

𝑁

𝑖=1

𝒅𝒊) +∑𝑚𝑖𝒅𝒊 × (𝝎 × 𝒅𝒊)

𝑁

𝑖=1

 

In queste espressioni compaiono tripli prodotti vettoriali: semplifichiamoli 

attraverso la regola “BAC-CAB” vista nel capitolo dell’algebra vettoriale: 

 

𝑳 =  ∑𝑚𝑖[𝝎(𝒛𝒊 ∗ 𝒅𝒊) − 𝒅𝒊(𝒛𝒊 ∗ 𝝎)]

𝑁

𝑖=1

+∑𝑚𝑖[𝝎(𝒅𝒊 ∗ 𝒅𝒊) − 𝒅𝒊(𝒅𝒊 ∗ 𝝎)]

𝑁

𝑖=1

 

 

Il termine (𝒛𝒊 ∗ 𝒅𝒊) è nullo: i due vettori sono infatti perpendicolari. 𝒛𝒊 𝑒 𝝎 

sono paralleli: il loro prodotto scalare è pari al prodotto dei loro moduli (idem 

per 𝒅𝒊 che moltiplica se stesso). 𝒅𝒊 𝑒 𝝎 sono perpendicolari: il loro prodotto 

scalare è nullo. In definitiva si ha: 

 

𝑳 =  −𝜔∑𝑚𝑖𝑧𝑖𝒅𝒊

𝑁

𝑖=1

+ (∑𝑚𝑖𝑑𝑖
2

𝑁

𝑖=1

)𝝎 

 

Il termine dentro parantesi è uguale a I (momento d’inerzia). Il primo termine 

è un vettore diretto perpendicolarmente a 𝝎 (dunque all’asse), mentre il 

secondo termine ha la stessa direzione e lo stesso verso di 𝝎 (dunque sta 

sull’asse). Il momento angolare 𝑳 quindi si scrive tramite la somma vettoriale 

di due componenti: una parallela all’asse pari a 𝐼𝝎 e una perpendicolare 

(indichiamola con 𝑳𝒑𝒆𝒓𝒑). Quindi: 

 

𝑳 = 𝐼𝝎 + 𝑳𝒑𝒆𝒓𝒑 
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Essendo il corpo rigido, il vettore 𝑳𝒑𝒆𝒓𝒑 ruota nel sistema di riferimento 

scelto, puntando sempre verso lo stesso punto: in conseguenza di ciò, la retta 

su cui giace il momento angolare L descrive un doppio cono (se 𝝎 si mantiene 

costante); se 𝝎 non si mantiene costante, la retta su cui giace 𝑳 “oscilla” a 

seconda del valore di 𝝎. 

 

Il risultato trovato ci insegna che, in generale, l’asse di rotazione non coincide 

con la retta su cui giace il momento angolare. Quand’è che tali direzioni 

coincidono, ossia 𝑳 giace sull’asse di rotazione? 𝑳 dev’essere parallelo ad 𝝎, 

perciò è sufficiente che il termine 𝑳𝒑𝒆𝒓𝒑 s’annulli. Affinché tale termine 

s’annulli, è sufficiente che, a parità di 𝒛, a ciascun punto (individuato dal 

vettore 𝒅𝒊) ne corrisponda un altro diametralmente opposto (individuato dal 

vettore −𝒅𝒊), in maniera tale che i contributi dovuti a 𝒅𝒊 si annullino a 

vicenda. Tale configurazione si ha, per esempio, nei solidi di rotazione, 

generabili attraverso la rotazione di una figura piana attorno a un asse. 
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Chiaramente, essendo I costante per un corpo rigido, si ha: 

 
∆𝑳

∆𝑡
= 𝐼

∆𝝎

∆𝑡
 

 

Definiamo il vettore 
∆𝝎

∆𝑡
 accelerazione angolare e lo indichiamo con la lettera 

𝜶: esso quantifica la rapidità con cui cambia il vettore velocità angolare nel 

tempo, esattamente come l’accelerazione indica la rapidità con cui cambia il 

vettore velocità nel tempo. 

 

Perciò:  
∆𝑳

∆𝑡
= 𝐼𝜶 

 

 

Ma, applicando la seconda equazione cardinale della meccanica, otteniamo: 

 

𝝉𝒆𝒙𝒕𝒕𝒐𝒕 = 𝐼𝜶 

 

 

Questa relazione somiglia moltissimo alla ben nota F= ma 

 

F = ma significa che maggiore è la massa inerziale (indice dell’inerzia 

traslazionale di un corpo), minore è il cambiamento di velocità subito dal 

corpo (quantificato da 𝒂) a parità di forza applicata; 

𝝉 = 𝐼𝜶 significa che maggiore è il momento d’inerzia (indice dell’inerzia 

rotazionale di un corpo), minore è il cambiamento di velocità angolare subito 

dal corpo (quantificato da 𝜶) a parità di momento torcente applicato. 

 

 

Se la risultante di tutte le forze che agiscono sul corpo è pari a 0, il corpo si 

muove di moto rettilineo uniforme. 

 

Se la risultante di tutti i momenti delle forze esterne che agiscono sul corpo 

rigido è pari a 0, il corpo rigido ruota con velocità angolare costante, ossia 

il moto di ogni suo punto è circolare uniforme attorno all’asse. 

 

Se la massa di un corpo in rotazione è maggiormente concentrata attorno 

all’asse, il suo momento d’inerzia è minore. Quest’ultima affermazione 
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giustifica come facciano le pattinatrici su ghiaccio a compiere spettacolari 

piroette, raggiungendo velocità angolari impressionanti.  

 

La ballerina inizialmente parte a ruotare su se stessa con le braccia e le gambe 

abbastanza estese: il suo momento d’inerzia è abbastanza alto. Poi, 

rapidamente, raccoglie braccia e gambe vicino all’asse di rotazione che passa 

per il suo corpo: il suo momento d’inerzia si abbassa notevolmente, ma il 

momento angolare si deve conservare: la velocità angolare di rotazione della 

ballerina aumenterà dunque notevolmente. 
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Momento d’inerzia di alcuni solidi 
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Teorema di Huygens-Steiner 
 

Abbiamo visto come si definisce il momento d’inerzia di un punto materiale 

e fornito una tabella che elenca i momenti d’inerzia per solidi rigidi notevoli. 

Non ha senso parlare di momento d’inerzia di un corpo come di una sua 

proprietà intrinseca, come accade per la massa. Se poniamo in rotazione il 

corpo attorno a un determinato asse, per esempio quello che passa per il suo 

centro di massa, al corpo assoceremo un determinato momento d’inerzia. Se 

cambiamo l’asse, il momento d’inerzia cambierà e dovremo dunque 

ricalcolarlo per descrivere il nuovo moto rotatorio. Dunque, il valore del 

momento d’inerzia dipende anche dalla posizione dell’asse attorno cui si 

svolge il moto rotatorio rispetto al corpo che ruota. 

I valori che trovate in tabella sono ricavati grazie all’uso del calcolo 

infinitesimale (che voi studierete presumibilmente più avanti), e spesso gli 

assi che si considerano sono gli assi di simmetria dei solidi notevoli (passanti 

generalmente per il centro di massa). Come fare per ricavare il momento 

d’inerzia del medesimo solido rigido rispetto a un altro asse? È necessario 

ricalcolarlo daccapo? Oppure è possibile, a partire da un valore noto, 

ricavarne uno ignoto più rapidamente? 

 

La risposta a quest’ultima domanda è 

affermativa ed è fornita dal Teorema di 

Huygens-Steiner o Teorema degli assi 

paralleli: 

Sia 𝐼𝑐𝑚 il momento d’inerzia di un 

corpo di massa m rispetto a un asse 

passante per il suo centro di massa: 

allora il momento d’inerzia I del 

medesimo corpo rispetto a un asse 

parallelo al primo e distante d da esso è 

dato da: 

 

𝐼 =  𝐼𝑐𝑚 +𝑚𝑑
2 
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Esempio: Calcolare il momento d’inerzia di una sfera omogenea di massa 

m=100 kg e raggio R=1 m rispetto a un asse tangente la sua superficie. 

Soluzione:  

Il momento d’inerzia di una sfera omogenea rispetto a un qualsiasi asse 

passante per il suo centro (che è anche il suo centro di massa) è dato da: 

𝐼𝑐𝑚 =
2

5
𝑚𝑅2 

Applichiamo il teorema appena citato: l’asse a cui si riferisce la traccia è 

parallelo a un opportuno asse passante per il centro di massa della sfera e dista 

R da esso: quindi: 

𝐼 =
2

5
𝑚𝑅2 +𝑚𝑅2 = (

2

5
+ 1)𝑚𝑅2 =

7

5
𝑚𝑅2 = 1.4 ∗ 100 ∗ 12 𝑘𝑔 𝑚2 = 

= 140 𝑘𝑔 𝑚2 
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Energia cinetica rotazionale 
 

Consideriamo un corpo rigido che compie un moto generico nello spazio: in 

virtù del vincolo di rigidità, il suo moto può essere scomposto in due 

movimenti più elementari: 

1) Una traslazione nello spazio con velocità pari alla velocità del 

suo centro di massa: infatti i punti non possono modificare le loro 

posizioni reciproche; 

2) Una rotazione (più o meno complessa) attorno a un determinato 

asse, nel sistema di riferimento del centro di massa: infatti in tale 

sistema la velocità del centro di massa è nulla. 

Di conseguenza, l’energia cinetica totale di questo corpo in un dato sistema 

di riferimento è dovuta sia al moto di rotazione sia a quello di traslazione: è 

dunque errato ritenere che essa sia pari esclusivamente a: 

𝐾 =
1

2
𝑀𝑣𝑐𝑚

2  

Riprendiamo un’equazione scritta nel paragrafo Sistema di due corpi: 

𝐾 =
1

2
𝑀𝑣𝑐𝑚

2 + 𝐾𝑐𝑚 

Ove  𝐾𝑐𝑚 rappresenta l’energia cinetica del corpo nel sistema di riferimento 

del centro di massa: un’energia rotazionale, appunto: come fare a 

determinarla? Dividiamo il corpo rigido in un numero molto grande di parti, 

così piccole da poterle assimilare a punti materiali, e sommiamo i vari 

contributi all’energia cinetica nell’ipotesi che in tale sistema l’asse si 

mantenga fisso: 

𝐾𝑐𝑚 =∑
1

2
𝑚𝑖𝑣𝑖

2

𝑖

 

Ove 𝑣𝑖 è il modulo della velocità della particella i-esima nel s. r. del centro di 

massa. Ma, come abbiamo già precisato, ogni punto del corpo rigido descrive 

attorno all’asse fisso un moto circolare con velocità angolare 𝜔, dunque:  

𝑣𝑖 =  𝜔𝑑𝑖 
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Ove con 𝑑𝑖 abbiamo indicato la distanza tra il punto i-esimo e l’asse fisso; 

pertanto: 

𝐾𝑐𝑚 =∑
1

2
𝑚𝑖(𝜔𝑑𝑖)

2

𝑖

=
1

2
(∑𝑚𝑖𝑑𝑖

2

𝑖

)𝜔2 =
1

2
𝐼𝜔2 

Per cui: 

𝐾 =
1

2
𝐼𝜔2 +

1

2
𝑀𝑣𝑐𝑚

2  

 

Il primo termine è chiamato energia cinetica rotazionale, il secondo energia 

cinetica traslazionale. 
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Esercizi 
 

Sulla conservazione del momento angolare 
 

Betelgeuse è una supergigante rossa giunta a una fase piuttosto avanzata 

della sua evoluzione.  La sua massa è pari a circa 20 masse solari. Pertanto 

è possibile che tale stella esploda come supernova (se l’esplosione non è già 

avvenuta), e si trasformi in una stella di neutroni. Se, invece di espellere gli 

strati più esterni, Betelgeuse conservasse tutta la sua massa, e si contraesse 

fino a raggiungere le dimensioni di una stella di neutroni (assumete R=15 

km), con che periodo ruoterebbe su se stessa? Fate la grossolana 

approssimazione di considerare Betelgeuse una sfera omogenea e rigida, che 

ruota su se stessa attualmente con un periodo di 17 anni e possiede un raggio 

pari a circa 990 raggi solari. 

Soluzione: 

Durante la contrazione non intervengono forze esterne: il momento angolare 

si conserva, per cui  

𝐿 = 𝐼𝜔 

𝐿𝑖 = 𝐿𝑓 

𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓 

2

5
𝑀𝑅𝑖

2𝜔𝑖 =
2

5
𝑀𝑅𝑓

2𝜔𝑓 

𝜔𝑓 = (
𝑅𝑖
𝑅𝑓
)

2

𝜔𝑖 = (
𝑅𝑖
𝑅𝑓
)

2
2𝜋

𝑇𝑖
  

2𝜋

𝑇𝑓
= (

𝑅𝑖
𝑅𝑓
)

2
2𝜋

𝑇𝑖
    →      𝑇𝑓 = (

𝑅𝑓

𝑅𝑖
)
2

𝑇𝑖 

𝑇𝑓 = 2.5 ∗ 10
−7 𝑠 

Chiaramente otteniamo un valore molto piccolo, 250 nanosecondi! In realtà 

la massa di Betelgeuse varierà durante il collasso, per via dell’espulsione 

degli strati più esterni, e perciò il periodo di rotazione della stella di neutroni 
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risultante sarà maggiore (tipici valori per stelle di neutroni: da qualche 

millisecondo a qualche secondo). 

 

 

Sul corpo rigido ed energia rotazionale 
 

Si supponga di lanciare una monetina (disco omogeneo di diametro 23.25 

mm, spessore 2.33 mm e massa 7.5 g   -descrizione di una moneta da 1 €-) di 

taglio lungo il percorso in figura: determinare la velocità iniziale con cui è 

necessario lanciarla, nell’ipotesi che essa percorra il profilo in figura 

rotolando senza strisciare, affinché essa si distacchi dal profilo esattamente 

nel punto più alto. 

 

Soluzione: 

La forza peso è l’unica forza agente sulla moneta a compiere lavoro, quindi 

l’energia meccanica si conserva. Inizialmente, la moneta ruota attorno 

all’asse perpendicolare al piano del foglio e, nel tratto piano, il suo centro di 

massa è alto r (raggio della moneta).  

Quando giunge nel punto più alto del profilo, non ruoterà più (si sta per 

staccare), su di essa non agirà più la reazione vincolare del profilo, ma 
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soltanto la forza peso, da cui dipenderà il valore della velocità tangenziale in 

quel punto (𝑣𝑓), infatti: 

𝑔 =
𝑣𝑓
2

𝑅 − 𝑟
 

Ove R-r è il raggio di curvatura del moto del centro di massa nel punto più 

alto della traiettoria. Dunque  

𝑣𝑓
2 = 𝑔(𝑅 − 𝑟) 

Imponiamo la conservazione dell’energia meccanica (cinetica, a sua volta sia 

traslazionale che rotazionale + potenziale gravitazionale) tra inizio e fine: 

1

2
𝑚𝑣𝑖

2 +
1

2
𝐼𝑚𝑜𝑛𝑒𝑡𝑎𝜔𝑖

2 +𝑚𝑔𝑟 =
1

2
𝑚𝑣𝑓

2 +𝑚𝑔(2𝑅 − 𝑟) 

La moneta è assimilabile a un disco omogeneo: 

𝐼𝑑𝑖𝑠𝑐𝑜 =
1

2
𝑚𝑟2 

Inoltre la moneta rotola senza strisciare: vale dunque la seguente relazione: 

𝑣 =  𝜔𝑟 

Per cui: 

1

2
𝑚𝑣𝑖

2 +
1

2
∗
1

2
𝑚𝑟2 ∗

𝑣𝑖
2

𝑟2
+𝑚𝑔𝑟 =

1

2
𝑚𝑔(𝑅 − 𝑟) + 𝑚𝑔(2𝑅 − 𝑟) 

1

2
𝑣𝑖
2 +

1

4
𝑣𝑖
2 + 𝑔𝑟 =

1

2
𝑔𝑅 −

1

2
𝑔𝑟 + 2𝑔𝑅 − 𝑔𝑟 

3

4
𝑣𝑖
2 =

5

2
𝑔𝑅 −

5

2
𝑔𝑟 

3

4
𝑣𝑖
2 =

5

2
𝑔(𝑅 − 𝑟) 

𝑣𝑖
2 =

5

2
∗
4

3
𝑔(𝑅 − 𝑟) =

10

3
𝑔(𝑅 − 𝑟) 

𝑣𝑖 = √
10

3
𝑔 (𝑅 −

𝑑

2
) = 2.48

𝑚

𝑠
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ELEMENTI di STATISTICA 
 

Gli errori di misura 
Per misura si intende una determinata procedura attraverso la quale si assegna 

un intervallo di valori numerici a una determinata grandezza: il processo di 

misura si deve basare dunque sui seguenti punti:  

1) Una descrizione accurata del sistema fisico in esame e della grandezza 

da misurare; 

2) Una descrizione accurata degli strumenti con i quali effettuare la 

misura e del loro utilizzo. 

Perché abbiamo affermato che l’esito di una misura di una grandezza fisica è 

un intervallo di valori piuttosto che un ben determinato valore?  

Durante il processo di misura intervengono una serie di fattori (anche molto 

diversi tra loro) che tendono a “spostare” il risultato dal valore vero di quella 

determinata grandezza; quest’ultimo, dunque, è inconoscibile. Dal momento 

che non possiamo determinare sperimentalmente il valor vero di una 

determinata grandezza, è necessario associare un’incertezza a ogni misura, 

ossia esprimerne l’esito come un intervallo di valori con una certa ampiezza, 

tipicamente centrato su un valore che potremmo definire ottimale. 

Spesso si fa confusione tra i termini incertezza ed errore: essi sono spesso 

usati come sinonimi, ma in realtà tra di essi intercorre una sottile differenza 

concettuale. 

 

 

L’errore è definito come il valore assoluto della differenza tra il valore 

ottimale misurato e il valor vero di una determinata grandezza: essendo 

inconoscibile il valor vero, anche l’entità dell’errore è inconoscibile. 

 

 

Quindi l’effettuazione di una misura consiste nella determinazione della 

miglior stima del valor vero di una determinata grandezza (cioè nella 

determinazione di un valore ottimale) e della miglior stima dell’errore sulla 

misura (ovvero l’incertezza). 
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Pertanto, l’esito della misura di una grandezza G sarà così genericamente 

espresso: 

𝐺 = (𝑥𝑜𝑡𝑡𝑖𝑚𝑎𝑙𝑒 ± ∆𝑥) 𝑢.𝑚.  
 

 ∆𝑥 = 𝑖𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑧𝑎 

Dove con la dicitura “u. m.” si intende l’opportuna unità di misura. 

 

Esempio: abbiamo misurato la massa di una persona ottenendo 

𝑚 = (81.2 ± 0.3) 𝑘𝑔 

 

 

Prima di analizzare brevemente le tipologie di errore e le loro cause, notiamo 

che è possibile esprimere l’incertezza su una misura in due modi: 

1) Sotto forma di incertezza assoluta: essa corrisponde all’intervallo ∆𝑥 e 

ha le stesse dimensioni della grandezza G (0.3 kg nell’esempio sopra); 

2) Sotto forma di incertezza relativa (detta anche precisione): essa 

corrisponde al rapporto tra l’incertezza assoluta e il valore ottimale 

della grandezza, ossia: 

 

𝑖𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑧𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =
∆𝑥

𝑥𝑜𝑡𝑡𝑖𝑚𝑎𝑙𝑒
 

 

Pertanto, l’incertezza relativa è adimensionale. 

 

Nell’esempio sopra: 

 

𝑖𝑛𝑐𝑒𝑟𝑡𝑒𝑧𝑧𝑎 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑎 =
0.3

81.2
= 4 ∗ 10−3 

 

È possibile esprimere tale incertezza anche in termini percentuali: 

 

𝑖𝑛𝑐. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙𝑒 =
∆𝑥

𝑥𝑜𝑡𝑡𝑖𝑚𝑎𝑙𝑒
∗ 100% 

 

Riprendendo sempre l’esempio fatto: 

 

𝑖𝑛𝑐. 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑢𝑎𝑙𝑒 = 0.4% 
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Tipologie di misure 
 

Una misura può essere: 

 

1) Diretta: la grandezza fisica viene direttamente confrontata con la 

grandezza campione scelta come unità di misura. 
 

Esempio: la misura dell’altezza di una persona attraverso un metro, della 

massa di un corpo attraverso una bilancia a bracci uguali… 

 

 

2) Strumentale: la grandezza fisica da misurare viene tradotta in un’altra 

grandezza dallo strumento di misura; quest’ultimo viene opportunamente 

tarato per restituire direttamente i valori della grandezza in esame. 
 

Esempio: la temperatura di un liquido viene misurata con un termometro 

a mercurio: in realtà, la grandezza temperatura viene tradotta dallo 

strumento (il termometro), in un’altra grandezza, ossia l’altezza della 

colonnina di mercurio. Il termometro è tarato in maniera tale che noi 

possiamo leggere direttamente la temperatura, ossia il costruttore del 

termometro si incarica di effettuare la conversione altezza colonnina → 

temperatura. 

 

 

3) Indiretta: il valore della grandezza fisica viene determinato attraverso una 

formula fisica che lega tra di loro altre grandezze. 
 

Esempio: misura del peso di un oggetto attraverso la formula 𝑃 = 𝑚𝑔, 

avendo misurato direttamente m e g. 

 

 

 

Gli strumenti di misura possono essere analogici o digitali: 

1) Strumenti analogici: la misura si effettua individuando un punto su una 

scala graduata oppure valutando la posizione di un ago o altro indicatore; 

2) Strumenti digitali: il valore ottimale della misura compare su uno 

schermo, lo sperimentatore deve leggerlo. 
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Calibro digitale (in alto) e metro analogico (in basso): entrambi servono a 

misurare delle lunghezze. 
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Tipologie di errori 
 

Errori massimi (o strumentali) 
 

Gli strumenti utilizzati per effettuare una misura hanno una certa risoluzione 

che li caratterizza. Con tale termine intendiamo la minima variazione del 

valore della grandezza che lo strumento riesce ad apprezzare. Ad esempio, un 

normale righello possiede tipicamente una risoluzione di 1 mm, ossia la 

distanza tra due “tacche” più vicine è pari a 1 mm. Quando effettueremo una 

misura di lunghezza con tale righello, tipicamente assoceremo al valore 

ottimale trovato un’incertezza pari alla risoluzione dello strumento, non 

riuscendo a quantificare frazioni di lunghezza inferiori alla minima distanza 

fra due tacche adiacenti della scala. 

In questo caso, l’errore che viene introdotto nel processo di misura è un errore 

massimo o strumentale, ossia il valore vero della grandezza in esame è 

incluso nell’intervallo definito dal valore ottimale e dall’incertezza. In altri 

termini, vi è una probabilità del 100% che il valor vero della grandezza cada 

nell’intervallo suddetto. 

 

 

 

 

Errori sistematici 
 

Può succedere che l’esito di una misura si discosti dal valore vero per via 

d’una serie di cause incontrollate ma in linea di principio controllabili, che 

determinano una sottostima o una sovrastima sistematica del valore della 

grandezza: in questo caso siamo in presenza di un errore sistematico. In altre 

parole, otteniamo un valore misurato sistematicamente maggiore oppure 

minore rispetto, ad esempio, a un valore di riferimento. Alcune situazioni 

tipiche in cui ciò si verifica sono le seguenti: 

1) Lo strumento di misura è calibrato male o non riproduce fedelmente 

l’unità di misura (per esempio, le tacche del righello di cui sopra non 

distano esattamente 1 mm ma leggermente di più, ciò comporta che le 

lunghezze misurate con questo strumento siano sottostimate); 
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2) Si sta adoperando lo strumento in condizioni operative diverse da 

quelle per cui esso è stato progettato.  

 

Esempio: il manuale di un sensore di temperatura per liquidi specifica 

che lo strumento va inserito completamente nel recipiente: inserirlo 

solo parzialmente può introdurre nel processo di misura degli errori 

sistematici; 

 

3) La grandezza misurata non corrisponde in realtà con quella che si 

vorrebbe misurare. 

Esempio: vogliamo misurare l’attività di una sorgente radioattiva, ma 

nei dati raccolti è presente anche il fondo ambientale: l’attività della 

sorgente viene così sovrastimata. 

 

 Una procedura che riduce maggiormente l’impatto degli errori sistematici 

rispetto a un’altra si definisce più accurata. 

 

 

 

Errori casuali 
 

Misure ripetute di una stessa grandezza possono dare esiti diversi per via di 

una serie di fattori, fluttuazioni incontrollabili: siamo in presenza di errori 

casuali. Per esempio, supponete di misurare per 100 volte con un cronometro 

al centesimo di secondo il tempo di discesa di una sferetta lungo un piano 

inclinato: verosimilmente non otterrete 100 valori uguali, bensì una serie di 

valori che ricorrono (cioè sono frequenti) in modo variabile. 

In generale, le cause della variabilità delle misure ripetute possono essere 

svariate, ad esempio: 

1) La grandezza in esame caratterizza una popolazione di individui, e il suo 

valore varia da individuo a individuo. Esempio: l’altezza degli abitanti 

di una città; 

2) La grandezza in esame è intrinsecamente casuale (o intrinsecamente 

stocastica) 

Esempio: il decadimento radioattivo è un fenomeno intrinsecamente 

casuale; 

3) La risoluzione dello strumento utilizzato è così buona da far sì che si 

superi il limite di riproducibilità della misura; è il caso dell’esempio a 

inizio paragrafo, in cui il cronometro al centesimo di secondo possiede 
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una buona risoluzione… se ne avessimo usato uno con una risoluzione 

di 1 s, probabilmente non avremmo ottenuto variabilità su misure 

ripetute, bensì misure tutte uguali. 

I fattori che provocano errori casuali agiscono, a differenza di ciò che accade 

in presenza di errori sistematici, in entrambi i versi, e all’aumentare del 

numero di misure il loro effetto tende dunque statisticamente ad annullarsi. 

Tali errori si possono perciò trattare rigorosamente attraverso gli strumenti 

della statistica e del calcolo delle probabilità. 

 

Quando effettuiamo misure ripetute di una stessa grandezza in presenza di 

fluttuazioni casuali otteniamo un campione sperimentale (ossia l’insieme dei 

valori trovati). Immaginiamo che tale campione sia estratto da una 

popolazione, ossia l’insieme di tutti i possibili valori teoricamente ottenibili 

come esito di una misura di quella grandezza. Ogni singolo valore di 

quest’insieme prende il nome di individuo. 

 

Possiamo rappresentare graficamente l’esito di un campionamento, per 

esempio attraverso un istogramma. 

L’istogramma può mostrare in ascissa gli intervalli relativi ai valori ottenuti 

e in ordinata il numero di misure (ossia il numero di occorrenze) il cui valore 

cade in ciascun determinato intervallo. Un istogramma di questo tipo prende 

il nome di istogramma in occorrenze. 

 

Esempio: si consideri la figura qui sotto. Essa mostra un istogramma in 

occorrenze: come si può vedere, abbiamo ottenuto, per esempio, 4 misure 

comprese fra i valori 2 e 3, una misura soltanto nel range 0-1… mentre la 

maggior parte di valori ottenuti (ben 11 misure) è nel range 6-7.  
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Possiamo anche confrontare istogrammi ottenuti da campionamenti con un 

numero totale di misure diverso, tuttavia a tal fine l’istogramma in occorrenze 

non è molto adatto; è preferibile servirsi di un istogramma in frequenze. La 

frequenza relativa a un generico intervallo k è così definita: 

𝑓𝑘 =
𝑛𝑘
𝑁𝑡𝑜𝑡

 

Dove con 𝑛𝑘 si intende il numero di occorrenze in quel determinato intervallo, 

mentre 𝑁𝑡𝑜𝑡 è il numero totale di misure (la somma di tutte le occorrenze nei 

vari intervalli). Per esempio, nel nostro istogramma 𝑁𝑡𝑜𝑡 = 49 (provate a 

contare voi stessi le occorrenze totali), e se prendiamo in esame l’intervallo 

6-7, allora 𝑛6−7 = 11. Dunque  

𝑓6−7 =
11

49
= 0.22 

Ossia il 22% delle misure cade nell’intervallo 6-7.  

L’istogramma in frequenze si costruisce calcolando le frequenze per ciascun 

intervallo con la formula riportata e riportandole in ordinata. Le ascisse 

restano invariate. Qui sotto riportiamo l’istogramma in frequenze realizzato a 

partire dal precedente istogramma: 

 

 

 

 

Istogramma in frequenze ottenuto a partire dall’ist. precedente: notare, 

come già calcolato sopra, come il picco abbia una frequenza pari a 

circa 0.22. Si provi a calcolare come esercizio le altre frequenze e a 

confrontarle con tale istogramma. 
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Dalle figure potete notare come il campione sia distribuito attorno a un valore 

“di picco”, a cui compete una frequenza maggiore, ma contemporaneamente 

si estenda sia a valori maggiori sia a valori minori rispetto all’intervallo a 

maggior frequenza. 

 

Come possiamo comportarci se volessimo riassumere l’esito del nostro 

campionamento in maniera più sintetica, senza cioè riportare tutti i valori 

ottenuti? Possiamo definire alcuni parametri rappresentativi del campione, 

che rientrano in generale nelle categorie degli indici di posizione e degli indici 

di dispersione. I primi quantificano sinteticamente la posizione complessiva 

dei dati del campione nella scala dei valori che può assumere la grandezza in 

esame: possono dunque essere usati per determinare il valore ottimale della 

grandezza. Nel caso del campione rappresentato attraverso gli istogrammi in 

figura, possiamo notare come esso si posizioni complessivamente attorno al 

valore 6.  

 

Gli indici di dispersione quantificano l’ampiezza della dispersione (cioè dello 

scostamento) dei singoli valori del campione dall’indice di posizione: 

possono essere utilizzati per stimare l’incertezza sul valore ottimale. 
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Tipici indici di posizione 
 

 

 

Centro intervallo  
È così definito: 

𝑥𝑐 =
𝑥𝑚𝑎𝑠𝑠𝑖𝑚𝑜 + 𝑥𝑚𝑖𝑛𝑖𝑚𝑜

2
 

Ove 𝑥𝑚𝑎𝑠𝑠𝑖𝑚𝑜 è il valore più alto del campione e 𝑥𝑚𝑖𝑛𝑖𝑚𝑜 è il minimo. 

Corrisponde, come dice il nome stesso, al valore che sta a metà tra il massimo 

e il minimo del campione. 

 

 

 

 

 

Moda 
È il valore che ricorre con maggiore frequenza. 

 
 

 

 

 

 

Mediana 
Per determinare la mediana ordiniamo in modo crescente gli elementi del 

campione: se il numero di elementi è dispari, la mediana sarà il valore centrale 

di questa sequenza; se è pari, vi saranno due valori centrali: la mediana 

corrisponde alla semisomma di tali due valori (che è a metà strada tra i due). 

Esempio: determinare la mediana dati i valori 11, 3, 5, 2, 7, 14. 

Ordiniamo i valori in ordine crescente  

2   3   5    7   11  14 

Essi sono in numero pari, dunque 

𝑚𝑒𝑑𝑖𝑎𝑛𝑎 =
5 + 7

2
=
12

2
= 6 
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Media aritmetica  

(tipicamente l’indice di posizione più usato) 

Essa è pari al rapporto tra la somma di tutti i valori del campione e il numero 

totale di misure: 

𝑥̅ =
∑ 𝑥𝑖
𝑁
𝑖=1

𝑁
=
𝑥1 + 𝑥2 +⋯+ 𝑥𝑁

𝑁
 

 

Esempio: Calcolare la media dei valori dell’esempio precedente. 

𝑥̅ =
11 + 3 + 5 + 2 + 7 + 14

6
= 7 
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Tipici indici di dispersione 

 

 

Semidispersione massima 
Quantifica la “semiampiezza massima” dei valori del campione ed è così 

definita: 

𝑠𝑒𝑚𝑖𝑑𝑖𝑠𝑝.𝑚𝑎𝑠𝑠𝑖𝑚𝑎 =
𝑥𝑚𝑎𝑠𝑠𝑖𝑚𝑜 − 𝑥𝑚𝑖𝑛𝑖𝑚𝑜

2
 

Esempio: usando i valori dell’esempio di cui sopra, otteniamo  

𝑠𝑒𝑚𝑖𝑑𝑖𝑠𝑝.𝑚𝑎𝑠𝑠𝑖𝑚𝑎 =
14 − 2

2
= 6 

 

 

 

 

Scarto medio 
Data una generica misura 𝑥𝑖 di un campione, definiamo così il suo scarto 𝑑 

rispetto alla media: 

𝑑 = 𝑥𝑖 − 𝑥̅ 

(differenza tra il valore e la media). 

Chiaramente, la somma di tutti gli scarti deve fare 0. Infatti: 

 

𝑠𝑜𝑚𝑚𝑎 𝑠𝑐𝑎𝑟𝑡𝑖 =  ∑𝑑𝑖

𝑁

𝑖=1

=∑(𝑥𝑖 − 𝑥̅)

𝑁

𝑖=1

=∑𝑥𝑖

𝑁

𝑖=1

−∑𝑥̅

𝑁

𝑖=1

= 𝑁𝑥̅ − 𝑁𝑥̅ = 0 

 

Come fare a non far annullare il contributo complessivo di tali scarti? 

Potremmo considerare ciascuno di essi in valore assoluto. Definiamo scarto 

medio la media dei valori assoluti degli scarti: 

 

𝑑̅ =∑|𝑑𝑖|

𝑁

𝑖=1

=
|𝑑1| + |𝑑2| + ⋯+ |𝑑𝑁|

𝑁
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Deviazione standard  

(o scarto quadratico medio) 

Essa è pari alla radice quadrata del rapporto tra la somma dei quadrati degli 

scarti e il numero totale delle misure diminuito di 1. 

𝜎𝑥 = √
∑ 𝑑𝑖

2𝑁
𝑖=1

𝑁 − 1
= √

∑ (𝑥𝑖 − 𝑥̅)
2𝑁

𝑖=1

𝑁 − 1
= 

= √
(𝑥1 − 𝑥̅)

2 + (𝑥2 − 𝑥̅)
2 +⋯+ (𝑥𝑁 − 𝑥̅)

2

𝑁 − 1
 

La deviazione standard del campione rappresenta la miglior stima 

dell’incertezza che è possibile associare a una singola misura del campione 

stesso: in altre parole, se effettuassimo un’ulteriore misura, il valore trovato 

avrebbe una probabilità abbastanza alta di cadere nell’intervallo con centro 

nella media aritmetica del campione e ampio ±𝜎𝑥. Qualora effettuassimo 

campionamenti sufficientemente numerosi, ma con un diverso numero di 

misure per ciascuno, noteremmo che il valore di 𝜎𝑥 cambierebbe di poco. 

 

Perché a denominatore compare un N-1 al posto di N? La spiegazione è da 

ricercarsi nel numeratore. A numeratore compaiono gli scarti delle singole 

misure, che, come ormai sappiamo, non sono tutti indipendenti. Dal momento 

che la loro somma deve dare 0, conoscendo N-1 valori degli scarti potremmo 

determinare l’N-esimo. Se per esempio la somma dei primi N-1 scarti fa 0.3, 

l’N-esimo scarto dev’essere pari a -0.3 perché la somma complessiva deve 

dare 0. Dunque, gli scarti indipendenti (cioè quelli che possono assumere un 

determinato valore indipendentemente dal valore degli altri) sono in realtà N-

1. Ecco perché a denominatore si divide per N-1. 

 

Abbiamo detto che la deviazione standard del campione è la miglior stima 

dell’incertezza da associare a ogni singola misura del campione. Ma qual è la 

miglior stima dell’incertezza da associare alla media aritmetica di un 

campione? Essa prende il nome di deviazione standard della media e si 

calcola così: 

 

𝜎𝑥̅ =
𝜎𝑥

√𝑁
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Ovvero la deviazione standard della media è pari al rapporto tra la 

deviazione standard del campione e la radice del numero totale di misure. 

 

Al crescere del numero di misure, la deviazione standard della media 

diminuisce: ciò ha senso, dal momento che, disponendo di un numero di 

misure via via maggiore, la media tende ad avvicinarsi al valor vero della 

grandezza in esame. Al limite, se potessimo effettuare un campionamento con 

un N tendente a infinito, la media del campione sarebbe uguale al valor vero 

della grandezza in esame. 

 

Dunque, la misura di una grandezza G affetta da errori casuali, di cui si è 

raccolto un campione di valori, può essere così espressa: 

 

𝐺 = (𝑥̅ ± 𝜎𝑥̅) 𝑢.𝑚. 
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TABELLA DATI 
 

Sole 

 

 

Raggio medio 

 

 

695475 km 

 

Massa 

 

 

1.99 ∗ 1030𝑘𝑔 

 

Temperatura 

 

 

5778 K 

 

Magnitudine apparente dalla Terra 

 

 

−26.74 

 

Magnitudine assoluta 

 

 

+4.83 

 

Età stimata 

 

 

4.57 ∗ 109𝑎𝑛𝑛𝑖 

 

Classe spettrale 

 

 

G2 V 

 

Posizione nel diagramma H-R 

 

 

Sequenza principale 

 

Distanza dal centro galattico 

 

 

27 ∗ 103𝑎. 𝑙. 

 

Periodo di rivoluzione intorno al centro galattico 

 

 

2.5 ∗ 108𝑎𝑛𝑛𝑖 
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Mercurio 

 

 

Raggio medio 

 

 

2440 𝑘𝑚 

 

Massa 

 

 

3.301 ∗ 1023 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

57.91 ∗ 106 𝑘𝑚 

 

Periodo orbitale 

 

 

87.969 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Periodo di rotazione 

 

 

58.646 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Eccentricità dell’orbita 

 

 

0.2056 

 

Albedo 

 

 

0.14 
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Venere 

 

 

Raggio medio 

 

 

6052 𝑘𝑚 

 

Massa 

 

 

4.867 ∗ 1024 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

108.2 ∗ 106 𝑘𝑚 

 

Periodo orbitale 

 

 

224.70 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Periodo di rotazione 

 

 

−243.03 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Eccentricità dell’orbita 

 

 

0.0068 

 

Albedo 

 

 

0.67 
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Terra 

 

 

Raggio medio 

 

 

6378 𝑘𝑚 

 

Massa 

 

 

5.972 ∗ 1024 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

149.6 ∗ 106 𝑘𝑚 

 

Periodo orbitale 

 

 

365.25 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Periodo di rotazione 

 

 

23ℎ 56𝑚 4𝑠 

 

Eccentricità dell’orbita 

 

 

0.0167 

 

Albedo 

 

 

0.37 
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Luna 

 

 

Raggio medio 

 

 

1738 𝑘𝑚 

 

Massa 

 

 

7.346 ∗ 1022 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

384.4 ∗ 103 𝑘𝑚 

 

Periodo orbitale 

 

 

27.322 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Periodo di rotazione 

 

 

27.322 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Eccentricità dell’orbita 

 

 

0.0549 

 

Albedo 

 

 

0.11 
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Marte 

 

 

Raggio medio 

 

 

3397 𝑘𝑚 

 

Massa 

 

 

6.417 ∗ 1023 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

227.9 ∗ 106 𝑘𝑚 

 

Periodo orbitale 

 

 

686.97 𝑔𝑖𝑜𝑟𝑛𝑖 

 

Periodo di rotazione 

 

 

24ℎ 37.4𝑚 

 

Eccentricità dell’orbita 

 

 

0.0934 

 

Albedo 

 

 

0.15 
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Giove 

 

 

Raggio medio 

 

 

71490 𝑘𝑚 

 

Massa 

 

 

1.899 ∗ 1027 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

778.4 ∗ 106 𝑘𝑚 

 

Periodo orbitale 

 

 

11.863 𝑎𝑛𝑛𝑖 

 

Periodo di rotazione 

 

 

9ℎ 55.5𝑚 

 

Eccentricità dell’orbita 

 

 

0.0489 

 

Albedo 

 

 

0.52 
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Saturno 

 

 

Raggio medio 

 

 

60270 𝑘𝑚 

 

Massa 

 

 

5.685 ∗ 1026 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

1.427 ∗ 109 𝑘𝑚 

 

Periodo orbitale 

 

 

29.447 𝑎𝑛𝑛𝑖 

 

Periodo di rotazione 

 

 

10ℎ 33.6𝑚 

 

Eccentricità dell’orbita 

 

 

0.0542 

 

Albedo 

 

 

0.47 
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Urano 

 

 

Raggio medio 

 

 

25560 𝑘𝑚 

 

Massa 

 

 

8.682 ∗ 1025 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

2.871 ∗ 109 𝑘𝑚 

 

Periodo orbitale 

 

 

84.017 𝑎𝑛𝑛𝑖 

 

Periodo di rotazione 

 

 

−17ℎ 14.4𝑚 

 

Eccentricità dell’orbita 

 

 

0.0472 

 

Albedo 

 

 

0.51 
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Nettuno 

 

 

Raggio medio 

 

 

24770 𝑘𝑚 

 

Massa 

 

 

1.024 ∗ 1026 𝑘𝑔 

 

Semiasse maggiore dell’orbita 

 

 

4.498 ∗ 109 𝑘𝑚 

 

Periodo orbitale 

 

 

164.79 𝑎𝑛𝑛𝑖 

 

Periodo di rotazione 

 

 

16ℎ 6.6𝑚 

 

Eccentricità dell’orbita 

 

 

0.0086 

 

Albedo 

 

 

0.41 
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Superficie e volume di alcuni solidi 

 

 

Area dell’ellisse 

 

 

𝜋 ∗ 𝑎 ∗ 𝑏 

 

Superficie della sfera 

 

 

4𝜋𝑅2 

 

Superficie del cilindro 

 

 

2𝜋𝑅(ℎ + 𝑅) 

 
 

Volume della sfera 

 

 
4

3
𝜋𝑅3 

 

 

Volume del cilindro 

 

 

𝜋𝑅2ℎ 

 

Fattori di conversione 

 

 

1 anno luce 
 

 

9460.7 ∗ 109 𝑘𝑚 
 

63240 𝑈𝐴 
 

1 parsec 
 

 

3.2616 𝑎𝑛𝑛𝑖 𝑙𝑢𝑐𝑒 
 

206265 𝑈𝐴 
 

1 radiante 
 

 

57° 17′45" 
 

206265" 
 

Giga (G) 
 

 

109 
 

Micro (𝝁) 
 

10−6 
 

Mega (M) 
 

 

106 
 

Nano (n) 
 

10−9 
 

Kilo (k) 
 

 

103 
 

Angstrom (𝑨̇) 
 

10−10 
 

Milli (m) 
 

 

10−3   
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Costanti fisiche e dati astronomici 

 

 

Costante di Stefan-Boltzmann 

 

 

𝜎 = 5.670 ∗ 10−8𝑊𝑚−2𝐾−4 

 

Velocità della luce nel vuoto 

 

 

𝑐 = 299792458 𝑚 𝑠−1 

 

Costante di Gravitazione 

Universale 

 

 
 

𝐺 = 6.674 ∗ 10−11𝑁𝑚2𝑘𝑔−2 

 

Costante di Wien 

 

 

𝑏 = 2.898 ∗ 10−3𝑚 𝐾 

 

 

Accelerazione terrestre s.l.m. 

 

 

𝑔 = 9.807 𝑚 𝑠−2 

 

Obliquità dell’eclittica 

 

 

23° 27′ 

 

Lunghezza d’onda a riposo 

della riga 𝑯𝜶 

 

 

6562.8 𝐴̇ 

 
 

Costante di Hubble 

 

 

67  𝑘𝑚 𝑠−1 𝑀𝑝𝑐−1 

75 𝑘𝑚 𝑠−1𝑀𝑝𝑐−1 
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