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INTRODUZIONE

(X3

n Astronomia ogni argomento va meditato ed
approfondito in senso critico, va analizzato nei suoi
elementi essenziali e collegato a quanto precede ed a

quanto segue’”’

(prof. Leonida Rosino)

Il Bignamino di Astronomia ha lo scopo di aiutare gli olimpionici nella
preparazione alle varie fasi delle Olimpiadi Italiane di Astronomia.
Costituisce la griglia essenziale per la risoluzione dei problemi: I’abbiamo
pensato come una “bussola”, soprattutto per gli studenti che provengono da
istituti in cui la fisica non & una disciplina curriculare nel Biennio.

Seguendo il Syllabus, abbiamo suddiviso il Bignamino in macro-temi:

Prima di iniziare: prerequisiti
Coordinate celesti

Misura del tempo

Meccanica celeste

Strumenti ottici

Astrofisica

Cosmologia elementare
Miscellanea

Sfera e trigonometria sferica
Approfondimenti

O 0000000 O0Oo

Ciascun macro-tema é corredato da sezioni e da esercizi di riferimento, situati
alla fine del nostro Bignamino. In conclusione, vi € anche un formulario
generale e una tabella dati.

U

Y

Buona astronomial!
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PRIMA DI INIZIARE... @ «,

Misure e strumenti )

La Fisica e una scienza sperimentale: con questo termine si intende che essa
si fonda sul metodo scientifico, introdotto nel XVII secolo. In estrema sintesi,
lo scienziato comincia con 1’osservazione del fenomeno fisico, formula delle
ipotesi sul suo “comportamento”, realizza degli esperimenti effettuando delle
misure, con l’intento di provare la validita delle sue ipotesi, ¢ alla fine
formula una legge utilizzando il linguaggio della matematica (che puo essere
“perfezionata” o corretta da successive osservazioni ed esperimenti).

definitivo in

Naturalmente queste misure vengono
effettuate con degli strumenti che non hanno
una “precisione” infinita.

Immaginiamo di volerci pesare su una normale

bilancia. Dopo essere saliti su di essa, sul display
compare un valore: supponiamo che esso sia 65.3 v
kg. Labilancia, in questo caso, riesce a misurare con

un livello di precisione (o meglio, come si dice, di

risoluzione) dell’etto: quindi non potremo sapere se

pesiamo, per esempio, 65.31 kg o 65.32 kg; la

bilancia, per com’¢ fabbricata, fornisce
informazioni fino all’ettogrammo.



Dato che per conoscere il valore di una grandezza & necessario misurarla
(altezza di un palazzo, massa di un camion ecc.) e gli strumenti non hanno
un grado infinito di risoluzione, non si potra mai conoscere il “valore vero”
di una determinata grandezza. Non solo, ma le ultime cifre dei valori misurati,
per quanto detto su, sono anche “incerte”. In generale, quindi, quando lo
scienziato effettua una misura, scrive accanto al valore misurato una
incertezza in questo modo:

(valore misurato + incertezza ) unita di misura

Esempio:
Abbiamo misurato la massa di una persona e ottenuto un
valore di (85.3 £0.2) kg (+ si legge “pit 0 meno”). Significa
N/ che il vero valore della massa della persona € compreso fra:
C/ 85.3-0.2=85.1kg e 85.3+0.2=85.5kg

Vediamo che, nel valore 85.3 le cifre 8 e 5 sono cifre certe: le conosciamo
con certezza, sicuramente la massa dell’uomo ¢ pari a 85 “e qualcosa”, ma
quel “qualcosa”, cio¢ il 3 decimale, ¢ incerto.

Fatta questa premessa, affrontiamo piu
rigorosamente la questione...



Cifre significative

In un numero misurato sono quelle cifre che includono tutti i numeri sicuri
pit un certo numero finale che ha una certa incertezza:

Esempio:

9.82¢

Il 2 finale ha una certa incertezza — 9.81 g puo essere 0 9.82 09.83 g

Come determinare le cifre significative?

a. Sono cifre significative di una determinata misura tutte le cifre eccetto
gli_zeri a sinistra della prima cifra diversa da zero (cioe gli zeri a
sinistra “non si contano’)

Esempio:
9.12 —» 3cifre significative
0.912 — 3 cifre significative

0.00912 — 3 cifre significative

b. Gli zeri “centrali” o a destra sono significativi! Si contano!!!

Esempio:
9.00 — 3 cifre significative
90.0 — 3cifre significative
9.000 — 4 cifre significative

0.910 — 3 cifre significative



c. Gli zeri finali di un numero intero (senza virgola) sono ambigui!

Perché?
Supponiamo che un astronomo dica:

Ho misurato |la distanza
Terra- Sole ottenendo un
valore di 149 600 000 000

di metri

Cosi, per quanto detto sopra, sembrerebbe che I'unica cifra incerta sia lo
0 finale, e la misura dell’astronomo abbia 12 cifre significative. In pratica
parrebbe che 1’astronomo conosca la distanza Terra-Sole come se I’avesse
misurata con un metro da sarta, in maniera “precisissima”!

Per evitare questo tipo di ambiguita, € utile ricorrere alla
notazione scientifica detta anche notazione
esponenziale...



Operazioni con le cifre significative

1) Quando si moltiplicano o dividono quantita misurate il risultato va
dato con tante cifre significative quante sono quelle della misura
con il minor numero di cifre significative:

HEE
100,0 0,0634 0,250
WX ——— = U,
emme 25,31
=EE B

(3 cifre)

In notazione scientifica 2.50 x 10~ 1

2) Quando addizioniamo o sottraiamo quantita misurate il risultato va
dato con lo stesso numero di decimali della quantita con il minor
numero di decimali:

184.0 + 2.324 = 186.524 = 186.5
— usiamo un solo decimale

3) Un numero “esatto” (coefficienti, m, ecc.) si considera possedere
un numero di cifre significative infinite in prodotti o divisioni:

2.00x3 = 6.00

(con 3 cifre e non una se consideriamo 3 esatto)
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Notazione scientifica

In notazione scientifica le misure sono espresse in questa forma:

Ax10™
n numero intero
A numero con la virgola,in genere < 10

Per la determinazione delle cifre significative, si considera solo il
numero A applicando le regole dette sopra

Esempio:
9x102 1 cifrasignificativa
9.0x10%2 2cifre significative
9.00x10% 3cifre significative

La notazione scientifica elimina le ambiguita: riprendiamo I’esempio di
prima...
Supponiamo che il metodo con cui I’astronomo ha misurato la distanza Terra-
Sole gli permetta di avere una risoluzione fino alle centinaia di milioni di

metri: allora lui scrivera

d = 1.496 x 10 metri (pili 0 meno eventuale incertezza)

Riportando la misura con 4 cifre significative, di cui ’ultima incerta (6? 5?
7?)

RICORDA...
Se il numero da portare in notazione scientifica ¢ < 1, I’esponente del 10
deve essere negativo, mentre se € >1, ’esponente € positivo!

4853 = 4.853 x 1000 = 4.853 % 10 10«10 = 4.853 x 10°

0.004853 = 2222 - 2059

1000  10x10x10

=4.853* 1071 % 1071 107 =4.853x 1073

----//"



Operazioni con la notazione scientifica

Addizioni e sottrazioni:

Prima di sommare o sottrarre due numeri scritti in notazione scientifica é
necessario esprimerli entrambi nella stessa potenza di 10 e poi sommare o
sottrarre i coefficienti

942 %1072 + 7.60x 1073 =
=942%x107% + 0.760 x 1072 =
= 10.18 x 1072 =
= 1.02x 1071

Moltiplicazioni e divisioni:
Per moltiplicare due numeri si moltiplicano prima le due potenze di 10
sommando gli esponenti e poi si moltiplicano i fattori rimanenti
6.3 X 10% % 2,64 x 10° =
= (6.3 2.64)x 107 =
=15.12x 107 =
=1.5x 108

Analogamente per dividere due numeri si dividono prima le due potenze di
10 sottraendo gli esponenti e poi si dividono i fattori rimanenti.

Potenze:
Un numero A x 10" elevato ad una potenza p € calcolato elevando A alla
potenza p e moltiplicando I'esponente nella potenza di 10 per p
(A X 10M)P = AP x 10™%P
(4.0 x 1073)* =
= (4.0)* x 1073 =

=256.0x 10712 =

=26x10710



Arrotondamento

Si guarda la cifra dopo a quella che si vuole arrotondare e:
- seéminore di 5, si conferma la cifra
- se & maggiore o uguale si aumenta di un’unita

Esempio:

1.3456 arrotondiamo a 4 cifre
— guardo la quinta cifra
- eéunb6cheé>5
— arrotondo a 1.346 (cioé aumento la quarta cifra di uno)

1.3456 arrotondiamo a 2 cifre
— guardo la terza cifra
—eundchee <5
— arrotondo a 1.3 (confermo la seconda cifra)



Ordine di grandezza

Spesso, quando si confrontano due misure dello stesso tipo di grandezze
(lunghezze, masse, tempi, ecc.) ¢ conveniente riferirsi all’ordine di
grandezza piuttosto che al semplice valore ottenuto con tutte le sue cifre
significative. In generale la definizione di ordine di grandezza che si puo
consultare su vari testi pud cambiare leggermente, noi lo definiremo nel
seguente modo:

“ Si definisce ordine di grandezza di una determinata misura la
potenza del 10 piu vicina alla misura stessa accompagnata
dall’unita di misura della grandezza stessa. ’ ,

Esempio:
La massa del Sole & pari a 1.99 x 10 ** kg. La potenza del 10 piu vicina a

tale numero é 10%

Dunque lordine di grandezza della massa del Sole é pari a 10 kg.

In generale, se il fattore che accompagna la potenza di 10 € minore di 5,
["ordine di grandezza risulta pari alla potenza stessa del 10. Se &€ maggiore
di 5, l'ordine di grandezza e pari a 10 elevato all’esponente aumentato di
un’unita.

Esempio:
e Lamassa dell’elettrone ¢ paria 9.11 x 103! kg

Essendo 9,11 >5, I’ordine di grandezza della massa dell’elettrone ¢:
10—31+1 kg — 10—30 kg

e L’altezza del Monte Bianco ¢ pari a 4.810 x 10° m
L’ordine di grandezza dell’altezza del Monte Bianco ¢ pari a 10° m, essendo
4.810 < 5.



Dimensione delle grandezze

Nel precedente paragrafo abbiamo accennato al fatto che I'ordine di grandezza
di una determinata misura & utile per effettuare dei confronti tra grandezze.
Ma affinché due grandezze possano essere confrontate, per stabilire, per
esempio, se il valore di una e maggiore di quello di un‘altra, o se i valori sono
simili, quale caratteristica devono avere?

In generale & necessario, affinché due grandezze possano essere confrontate,
che esse abbiano le stesse dimensioni, cioé appartengano al medesimo
“gruppo” di grandezze “simili". Dicendo “simili" intendiamo che ¢ possibile
stabilire una relazione d'ordine fra loro, cioe determinare quale di esse sia
maggiore, quale minore...

Grandezze che hanno le stesse dimensioni fisiche si dicono omogenee.
E possibile confrontare e sommare tali grandezze.

Esempio:

L’apertura alare di un aeroplano, 1’ampiezza minima
dello Stretto di Messina, I'altezza del Burj Khalifa sono
grandezze aventi la stessa dimensione: appartengono alla
classe delle lunghezze.

In generale le dimensioni fisiche di una grandezza si esprimono con delle
lettere maiuscole. Per indicare che vogliamo considerare le dimensioni
fisiche di una grandezza, rappresentiamo il suo simbolo tra parentesi
guadre. Indichiamo le lunghezze con L, le masse con M, i tempi con T.

Le costanti numeriche (come m, e, coefficienti nelle formule...) e le
grandezze che sono date dal rapporto di due grandezze omogenee fanno parte
della categoria delle grandezze adimensionali. Il simbolo con cui si indica
una grandezza adimensionale € [1].

HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESRS

N.B.: Non confondere la M delle masse con la m minuscola che indica il :
metro!!

Infatti [m]= L (e una lunghezza).



Esempio:

Sia v una velocita, allora: Sia F una forza, allora:
V=[msY=LT™ [F1= [N]= [kg m s7] =
=ML T?

Analisi dimensionale

Quando scriviamo una relazione fra le grandezze, dobbiamo aver cura, per
non commettere un errore, che i due membri della relazione (destra e sinistra
rispetto all'uguale) abbiano le stesse dimensioni fisiche. Non é possibile,
infatti, per esempio, che una grandezza che ha le dimensioni di una massa sia
uguale a una grandezza (o0 a una combinazione di varie grandezze) che ha le
dimensioni di una forza, e cosi via.

Esempio:
a = cos (t)
con a lunghezza e t tempo € dimensionalmente erratal

Infatti il coseno deve prendere per argomento (...) una grandezza
adimensionale (un numero) ed esso “restituisce” parimenti una grandezza
adimensionale.

E dimensionalmente corretto scrivere:

a = Acos(wt)

confd] =L e [w]=T71



Per i piu grandi...
Analisi dimensionale e semplici relazioni

L'analisi dimensionale e talvolta utile per trovare delle semplici relazioni,
guando si intuisce la dipendenza di una grandezza fisica da altre grandezze.

Facciamo un esempio!

Come sara precisato piu avanti nel testo del Bignamino, quando un corpo di
massa m si muove di moto circolare uniforme, su di esso agisce una forza
centripeta. Se connettiamo un dinamometro a tale massa che si muove, in
maniera che misuri la forza centripeta, notiamo che essa varia (tenendo le altre
grandezze costanti) se facciamo variare il raggio della circonferenza, la massa
dell'oggetto oppure il modulo della sua velocita tangenziale. Quindi
potremmo scrivere che:
F = F(m,R,v)
dove F indica la forza centripeta, m la massa, R il raggio e v la velocita

Le parentesi vicino la F indicano che supponiamo che F sia una funzione (cioé
dipenda) da R, m e v. Quindi I'espressione di F dovra essere del tipo:
F = m*RB vY

E i due membri dovranno avere le stesse dimensioni fisiche, dunque:
MLT 2= M*LBLYT™Y
(scrivo le dimensioni dei due membri)

MLT 2= M% LAY T~V
Come detto le dimensioni dovranno essere le stesse, quindi:

a=1
p+y=1 2>p= -1
—y==-2-2y=2

Quindi F=m v?/ R, che in effetti & I'espressione corretta!



Attenzione: questo esempio non deve indurre il lettore a pensare che I'analisi
dimensionale riesca a predire le esatte relazioni tra le grandezze! Come si pud
comprendere studiando il metodo seguito nell’esempio, non & possibile
determinare se nell'espressione sono presenti costanti come = o
coefficienti numerici.

Per convincerti di cio, prova a trovare il
periodo di un pendolo semplice nel regime
di piccole oscillazioni, che indichiamo con
T, sapendo che:

r=T(g)
con | lunghezza pendolo e g accelerazione di
gravita.

Confronta poi l'espressione con quella
corretta, ottenuta applicando il secondo
principio della dinamica, ossia:

l

T=2mn |—
)




COORDINATE CELESTI

Misura degli angoli: grado, radiante, ora

L’ampiezza di un arco o del corrispondente angolo al centro si pud misurare
in uno dei seguenti sistemi:

o Il sistema sessagesimale, che ha come unita di misura il grado.

IL GRADO

Il grado é definito come la 360esima parte dell’angolo giro. | suoi
sottomultipli sono i primi e i secondi.

% 1 grado ¢ diviso in 60 primi, 1°=60’
% 1 primo ¢ diviso in 60 secondi, 1’=60"
¢ Quindi, 1 grado equivale a 3600”

o |l sistema circolare, che ha come unita di misura il radiante

IL RADIANTE

Il radiante (rad) ¢ l’ampiezza dell’angolo al centro di una
circonferenza che con i suoi lati intercetta un arco uguale al raggio.




Dunque il rapporto tra la misura dell’arco e la misura del raggio € un numero
reale a che rimane costante:

L’ampiezza di un radiante €:

0 Ingradilrad= 57°17 44"~ 57°3
o Inprimi 1rad ~3438’

o Insecondi 1rad ~206265 (NUMero magico!!)

Ricorda il numero
magico: 206265. Ti
servira in seguito...

In astronomia e necessario molto spesso convertire la misura in gradi di un
arco in misura di ora o viceversa. L’ampiezza di un angolo giro misurato in
gradi € 360°, che in ore sono 24h:

_360°
T 24h

h = 15°

1m =15’

15 = 15"



Distanze dei corpi celesti

La distanza dei corpi celesti viene determinata attraverso la misura di un
angolo detto parallasse. L’angolo di parallasse ¢ 1’angolo sotto cui viene visto
un oggetto se osservato da due posizioni diverse.

i 0 s Si parla di parallasse geocentrica
! guando la distanza tra le due
! f osservazioni e uguale al raggio
| terrestre, mentre di parallasse annua
| quando la distanza tra i due
| osservatori ¢ uguale al semiasse maggiore dell’orbita della Terra intorno al
I
1
1
|
|
|
I
1
1
|
|
|

o'

Sole (ovvero I’Unita Astronomica). In figura, p ¢ 1’angolo di parallasse e d la
distanza dell’osservatore dell’oggetto. La relazione tra la distanza e la
parallasse é data dalla semplice formula:

Spesso viene usato il parsec come unita di

. . R s - La stella si vede qui » La stella si vede qui
misura delle distanze stellari. Tale unita di in giugno in dicennbre
misura é cosi definita: un corpo celeste si
trova alla distanza di 1 parsec (1 pc) quando
la sua parallasse annua é di 1 secondo
d’arco (17).

Stella vicina

Grazie all’introduzione del parsec, la
formula della parallasse si semplifica
ulteriormente:

dicembre

d( C)—l
p o

Come si puo vedere, se p = 1”, allora d € proprio 1 pc.



Dimensioni apparenti di un oggetto

Le dimensioni apparenti di

un oggetto dipendono dalla -, ‘
sua distanza. In astronomia %
il diametro angolare (o ? '
dimensione angolare) di un

oggetto e la misura del suo Dimensiane |

diametro  rispetto  alla angolare [

distanza  dall’osservatore, '

cio¢ I’angolo sotto il quale,

alla detta distanza, si vede
I’oggetto. Si calcola con la

seguente formula: '.‘ | Osservatore
2 t 3 D | /
a = an - —
24 CQj

Dove D e il diametro reale
dell’oggetto e d la distanza dall’osservatore.

Generalmente, il diametro apparente dei corpi celesti € inferiore ad 1°

Si puo fare anche il processo inverso: misurato il diametro apparente in
secondi d’arco di puo calcolare il diametro reale dell’oggetto con la seguente
formula:

D _ d * all
"~ 206265




Sistemi di riferimento astronomici

Gli elementi che definiscono i sistemi di coordinate astronomiche sono:

1. Unadirezione fondamentale;

Un piano perpendicolare alla direzione fondamentale;
Un’origine;

Un verso di percorrenza;

Una unita di misura.

arwd

Sistema altazimutale

Nel sistema altazimutale o orizzontale la direzione fondamentale é data dalla
verticale e il piano perpendicolare ¢ dato dall’orizzonte astronomico. La
verticale alla superficie terrestre passante per I'osservatore individua lo zenit
e il nadir. Le coordinate in questo sistema sono I’ Azimut (A) e I’Altezza (h).

Azimut (A del punto T): e I'angolo formato dal piano del cerchio verticale
passante per T e il meridiano astronomico. Si misura in gradi e frazioni di
grado partendo dal punto cardinale sud nel senso delle lancette dell'orologio
(orario). Esso corrisponde, nel disegno, all'angolo SOB dove O ¢ I'osservatore
e B é l'intersezione dell'orizzonte con il cerchio verticale passante per T.

almucantarat
meridiano
delluogo

zenit Cerchio
7 verticale per T

P alo
Mord celeste




Altezza (h del punto T): é I'ordinata sferica di un punto sulla sfera celeste,
cioe la sua distanza angolare dall'orizzonte misurata lungo il cerchio verticale
passante per quel punto. Si esprime in gradi e frazioni di grado con valore
positivo verso lo zenit e negativo verso il nadir. Nel nostro disegno, l'altezza
del punto T corrisponde all'angolo TOB dove O e l'osservatore e B ¢
I'intersezione dell'orizzonte con il cerchio verticale passante per T. L'arco
complementare dell'altezza si chiama distanza zenitale e nel nostro disegno ¢
rappresentata dall'angolo ZOT, dove Z ¢ lo zenit dell'osservatore. La distanza
zenitale si indica generalmente con z.

Nel sistema azimutale entrambe le coordinate (azimut e altezza) delle stelle
variano sensibilmente con il passare del tempo a causa del moto di rotazione
della Terra.

Sistema orario

Questo sistema di coordinate astronomiche ha come direzione e piano
fondamentali rispettivamente I'asse del mondo e il piano dell'equatore. Le
coordinate sferiche di questo sistema sono 1’Angolo orario (H) e la
Declinazione (8)

L’angolo orario é la distanza
B angolare tra il cerchio orario che
Nord passa per il punto e il meridiano
celesten, A . - astronomico. Si misura in ore e
frazioni di ora lungo I'equatore
celeste, partendo dal meridiano
astronomico, in senso orario per
un osservatore boreale.

La declinazione rappresenta la
ofizzonte distanza angolare tra un punto
della sfera celeste e I'equatore celeste, misurata lungo il cerchio orario che
passa per tale punto. Si misura in gradi e frazioni di grado, con segno positivo
verso il polo nord celeste e negativo verso il polo sud. L’origine del sistema ¢
il punto M, detto mezzocielo.

In questo sistema nel corso del giorno le stelle variano il loro angolo orario
mentre rimane costante la loro declinazione.



Sistema equatoriale

Questo sistema di coordinate astronomiche ha come direzione e piano
fondamentali rispettivamente I'asse del mondo e il piano dell'equatore. Le
coordinate sferiche di questo sistema sono 1’ Ascensione retta (AR o a) e la
Declinazione (DEC o 6). L'origine ¢ il punto gamma (y), 0 primo punto
d’Ariete (o punto vernale), dato dall’intersezione tra 1’eclittica e 1’equatore
celeste, punto in cui si trova il Sole il giorno dell’equinozio di primavera.

w

L'ascensione retta si misura di
solito in ore, minuti e secondi
lungo  l'equatore  celeste,
partendo dal punto gamma e
con senso di percorrenza
antiorario.

La declinazione rappresenta la
distanza angolare tra un punto
della sfera celeste e I'equatore,
misurata lungo il cerchio orario
che passa per tale punto. Si
misura in gradi e frazioni di
grado con segno positivo verso
il polo nord celeste e negativo
verso il polo sud.

Le coordinate di questo sistema nel corso del giorno rimangono costanti.



Sistema eclitticale

Il sistema eclitticale viene usato solitamente per lo studio dei moti planetari
che avvengono in prossimita dell’eclittica. Il piano e 1’asse fondamentale sono
rispettivamente il piano dell’eclittica e la sua perpendicolare, che individua
sulla sfera celeste i poli dell’eclittica. Le coordinate eclitticali sono:

P Longitudine (A): contata dal
punto y, da 0° a 360° in senso

fé‘g:e I\ antiorario (positivo).
- N\ ; /‘ B Latitudine (B): & I’arco compreso
“’:""'?3‘ ol/ tra D’eclittica e I’astro T, che si
' f/‘—/"/>'a considera sul cerchio massimo

passante per i poli dell’eclittica e
per I’astro stesso. Viene contata da
0° a 90°, positivamente
b= nell’emisfero  eclitticale  nord,
negativamente nell’altro.

Ricordiamo che:

Si dice coluro equinoziale il cerchio orario che passa per i poli celesti e per i
punti y e della Libra. Il coluro solstiziale invece € il cerchio orario che passa
per i poli celesti e per i punti dell’eclittica che hanno la massima e la minima
declinazione (punti dei solstizi). Dodici costellazioni disposte lungo I’eclittica
formano lo Zodiaco.

Sistema galattico

Le coordinate galattiche sono legate strettamente al sistema stellare al quale
apparteniamo: la Galassia. Il piano e 1’asse fondamentale di questo sistema
sono rispettivamente il piano mediano della Via Lattea e il suo asse
passante per il centro galattico. Il piano della Galassia interseca la sfera
celeste sull’equatore galattico. Per individuare un astro T nel sistema di
coordinate galattiche, si fa passare un cerchio massimo per i poli e per T;
questo interseca 1’equatore galattico nel punto B.



Polo Nord
Galattico

equatore
galattico /

Latitudine
Longitudine galattica

galattica

Polo Sud
Galattico

Le coordinate galattiche sono:

Longitudine (1): e contata partendo dalla direzione del centro galattico, da 0°
a 360°, in senso antiorario per un osservatore posto con i piedi sul piano

galattico e con la testa rivolta verso il polo nord galattico.

Latitudine (b): ¢ I’arco compreso tra I’astro A e il punto B, contato da 0° a
90° in senso positivo nell’emisfero nord galattico e negativo nell’altro.

Le coordinate equatoriali del centro galattico e del polo nord galattico,
fissate convenzionalmente nel 1958 dall’Unione Astronomica Internazionale,

PG - AR = 12h 49 min ; DEC = 27.4°
CG —» AR = 17h 42 min ; DEC = —28.9°



Posizione del centro galattico (segnata con x), posta tra la costellazione del
Sagittario e quella dello Scorpione. E il punto in cui la Via Lattea appare piu
luminosa, ma a causa delle fredde polveri interstellari sulla linea di vista, non puo
essere studiato nella lunghezza d’onda del visibile, né dell’UV, né dei raggi X a
debole frequenza. Tutte le informazioni di cui disponiamo ci sono fornite
dall’osservazione dei raggi gamma, raggi X a forte frequenza, infrarossi e onde
radio. Dopo una quindicina d’anni di osservazione si ¢ arrivati alla conclusione che
nella Via Lattea, come al centro della maggior parte delle galassie, vi sia un buco
nero supermassiccio chiamato Sagittarius A*.



Relazioni tra sistemi di riferimento

Latitudine del luogo

La latitudine geografica ¢ di una localita
sulla superficie della Terra € uguale
I’altezza del polo celeste sul suo
orizzonte. Orizzonte e Zenit sono
separati da un angolo retto. La latitudine
geografica del luogo si ottiene sottraendo
da 90° la distanza zenitale del polo
stesso.

¢ = hpolo =90° — Zpolo

FORMULE INVERSE:

Zpolo = 90° — hpolo =90°—¢

Stelle circumpolari

Vista da un qualsiasi luogo della superficie terrestre (quando siamo
all’Equatore la situazione si complica), una parte della volta celeste non
tramonta mai, e rimane sempre al di sopra dell’orizzonte. Tale parte di cielo ¢
detta “circumpolare”. Essa contiene le stelle che hanno declinazione &
maggiore 0 uguale a un valore
pd limite che si ottiene sottraendo da
’ 90° il valore della latitudine

geografica ¢ del luogo.

§>90°—¢

Se la declinazione é compresa tra:

—(90° = ) < § < 90° — ¢

Le stelle sono occidue: sorgono e tramontano sull’orizzonte dell’osservatore.



Bignamino di Astronomia

Se:
§ < —(90°— )
Quindi:
5 < @ —90°

Le stelle sono anticircumpolari: non sorgono mai e stanno sempre al di sotto
dell’orizzonte

Culminazione
Una stella culmina quando raggiunge la sua massima altezza, cioe ¢ sul
meridiano. La declinazione 6 e la distanza zenitale z sono legate in modo
semplice alla latitudine ¢ dell’osservatore.

Al momento della culminazione superiore (massima altezza della stella
sull’orizzonte) si ha:

z=¢@—06

Al momento della culminazione inferiore si ha:

z=180°— (¢ + 6)




Altezza (culminazione inferiore/superiore)

Una stella culmina superiormente
guando raggiunge la sua massima
altezza vista un determinato luogo (ad
una determinata latitudine ¢).

hy =90° + (¢ — 6)
Poiché Ialtezza deve essere h < 90°, distinguiamo i due casi:

1. Sed < ¢@,allorah =90°— ¢ + & (si prende il segno meno)
2. Sed > ¢, allorah =90°+ ¢ — & (si prende il segno piu)
Analogamente in culminazione inferiore:
h,=-90°+¢@+§

Pn La formula della
Equatore culminazione inferiore &
sempre la stessa!

Orizzonte
Perché se § < ¢:

hy =8~ (90° — @)
hy =68 — 90°+ ¢
hy, =—90°+6+¢

Sed > ¢:
(h negativa, & sotto I'orizzonte) Orizzonte
h, =8 + (¢ — 90°) h
[
h,=—-90°+6+¢
Ps

Equatore



FORMULE INVERSE:

@ =90°-h+$6 e d=¢+h—-90°

Latitudine del luogo (culminazione inferiore/superiore)
Dalla conoscenza dell’altezza di una stella alla culminazione inferiore e di
guella alla culminazione superiore possiamo stabilire la latitudine del luogo
di osservazione:

_hy thy
T2

Questa formula é valida per tutte le stelle
(ma bisogna fare attenzione! —vd. dopo),
ma la si usa spesso per conoscere la
latitudine di un luogo osservando una
stella circumpolare (infatti, per queste
stelle riusciamo ad osservare sia la
culminazione inferiore sia quella
superiore). La latitudine, infatti, non ¢
altro che una “media” tra le due altezze
(culminazione superiore e inferiore).

FORMULE INVERSE:

hl = 2(p - h2
hz = 2(p - hl
Per una stella circumpolare la minima altezza € h,,;, = § + ¢ — 90°

E necessario tuttavia spendere qui qualche parola per un “corretto utilizzo” di
guesta relazione, a seconda del valore della declinazione della stella. Le
osservazioni che seguono (specialmente per quanto riguarda il 2° caso) hanno
un interesse maggiormente matematico piuttosto che osservativo: se
volessimo determinare con il metodo delle culminazioni la latitudine di un
luogo, sceglieremmo di misurare le altezze di una stella circumpolare per quel
determinato luogo, in maniera tale che la visibilita della stella in entrambe le
culminazioni sia garantita. Se la stella fosse occidua, infatti, non potremmo
osservare la culminazione inferiore (e quindi misurarne la corrispondente
altezza sull’orizzonte)!



Iniziamo a esaminare piu nel dettaglio la relazione.

Premettiamo che in un dato luogo, la declinazione dello zenit & uguale alla
latitudine del luogo stesso. Quindi una stella che possiede una declinazione
maggiore della latitudine del luogo d’osservazione (o, se ci troviamo
nell’emisfero sud, una declinazione minore della latitudine del luogo
d’osservazione), culmina superiormente dalla parte del polo “rialzato”
rispetto allo zenit, cioe il polo visibile da quel dato luogo (polo nord celeste
se I’osservatore ¢ boreale, polo sud celeste se 1’osservatore ¢ australe).

1° caso: 6>¢

Per semplicita consideriamo un osservatore boreale (si pud fare una
schematizzazione analoga con le dovute accortezze per un osservatore
australe): nel caso in cui 6 > @, si consideri la situazione di Figura 1. Le altezze
alla culminazione superiore (h. in figura) e inferiore (h: in figura) vengono
valutate “partendo” dal punto cardinale nord. Quindi se ne faccio la media,
ottengo proprio I’angolo del punto che sta in mezzo a queste due posizioni.
Siccome tale punto é il polo nord celeste (Py), ottengo la latitudine del luogo.

Figural: 8> ¢

Z: zenit;

h,: altezza culminazione superiore;
hi: altezza culminazione inferiore;
Pn: polo nord celeste;

le due posizioni della stella.

hi= ¢ —90°+5

hy=90°+¢ —§

Sommando membro a membro le due relazioni:

hi+h,=¢0—90°4+6+ 90°+ ¢ — 6§ =2¢

¢: latitudine del luogo d’osservazione.
Come si pu0 vedere PN ¢ intermedio tra



it hy

2° caso: 0<¢

Nel caso in cui 6 < @, si ha una situazione in cui bisogna prestare piu
attenzione (Figura 2):

Equatore

Orizzonte

Figura2:8<¢

Z, Py come in Figura 1;

L’angolo in rosso rappresenta la declinazione della stella;

L’angolo in viola (h2) rappresenta ’altezza alla culminazione superiore della
stella;

L’angolo in verde chiaro (h1) rappresenta 1’altezza alla culminazione inferiore
della stella: tale angolo ¢ ottenuto tracciando la retta parallela all’equatore
passante per la stella (in figura);

L’angolo in verde scuro rappresenta la latitudine del luogo d’osservazione.

S e N sono rispettivamente i punti cardinali Nord e Sud.

Come detto sopra, la stella culmina superiormente a sud dello zenit,
dunque I’altezza alla culminazione superiore viene valutata partendo dal
punto cardinale sud. Viceversa, la stella culmina inferiormente dal “lato
nord”, quindi é da nord che viene valutata I’altezza a tale culminazione.



Date le due “origini” diverse per prendere le altezze, esse non si possono
“mediare” acriticamente. Bisogna ricondursi a un’altezza alla
culminazione superiore valutata dal punto nord, per far coincidere le due
origini.

Naturalmente quest’ultima non € un’altezza vera e propria: sara maggiore di
90°, pero ci permette di ottenere il risultato voluto: infatti, chiamando
quest’ultima altezza h’,

hy=90°— @+ 6
h =180°—h, =90°+ ¢ — &
hy=@—90°+6

h"+hy 90°+ ¢—6+ ¢—90°+§
2 2

=9

In Figura 2, h’ ¢ pari al supplementare dell’angolo viola scuro (h;). Dalla
figura stessa ci si puo convincere di come adesso stiamo valutando entrambe
le “altezze” (o meglio, le distanze angolari prese con il loro segno a seconda
che la stella sia sopra o sotto 1’orizzonte) dal punto cardinale Nord.

Dopo aver letto quest’ultima osservazione, per il lettore sara facile
comprendere quanto affermato immediatamente dopo aver fornito la relazione
all’inizio del paragrafo: il problema posto si puo risolvere in ogni caso
riconducendosi alla stessa origine, tuttavia a livello osservativo 1’impiego di
stelle circumpolari fa si che ’origine per le altezze sia gia la stessa, ossia il
punto cardinale nord. Infatti una stella circumpolare si discosta “poco” dal
polo nord celeste!

Nota: se avessimo sommato le due altezze in questo secondo caso (6<o) e
diviso per due, avremmo trovato la declinazione della stella come si puo
facilmente intuire dalla Figura 2, che riportiamo di seguito.



Infatti sappiamo che:

Equatore

QOrizzonte

hi= @—90°+6
h, =90°— @+ 6

hi+h, ©—90°+86+90°—¢@+8 26
2 ) 2

=04

Se esaminiamo la figura, possiamo convincerci di nuovo della validita di
questa relazione: prolungando verso il meridiano sud la semiretta che
individua la posizione della culminazione inferiore della stella, ci accorgiamo
che P’intersezione con la sfera celeste di tale prolungamento dista dalla
posizione della culminazione superiore di un angolo pari a 25. Ma tale
distanza angolare & anche uguale ad hi+h, (con hl presa col suo segno

negativo), dunque divisa per due da proprio 22—5 =6



Distanza zenitale

z=90°—h

La distanza zenitale indica quanto dista la
stella dallo zenit, che si trova sulla verticale
dell’osservatore. Per trovarla, basta sottrarre
a 90° (la verticale e 1’orizzonte sono separati
da un angolo retto) I’altezza della stella h.

FORMULE INVERSE:

h=90°-z

Ascensione retta
Tra I’ascensione retta a, il suo angolo orario H ed il tempo siderale relativi ad
un dato osservatore vale la relazione:

Ts=a+H

NOTA: Quando il punto y passa al meridiano T, = 0 (Il tempo siderale €
definito come I’angolo orario del punto y); quando la stella passa al meridiano
H=0e:

Ts=«a



Il tempo siderale coincide con I’ascensione retta delle stelle che passano al
meridiano. Per conoscere 1’ascensione

retta di una stella ¢, bisogna calcolare la

differenza tra il tempo siderale del luogo Ts M

T di osservazione e 1’angolo orario H H

della stella stessa.

a=T,—H

L’angolo orario si trova dalla formula:

H=T;,—-«

Coordinate orarie dei punti cardinali Nord e Sud:
Emisfero boreale: Nord (12h; 90° — latitudine)
Sud (0h; latitudine — 90°)
Emisfero australe: Nord (Oh; latitudine + 90°)

Sud (12h; — 90° — latitudine)



Declinazione del Sole
A causa dell’inclinazione dell’eclittica sull’equatore celeste, la declinazione
del Sole varia in modo non uniforme nel corso dell’anno; una buona
approssimazione ¢ data dalla relazione:

_ N + 284
0o = 23°27" *sin (360° * —)

365

Dove:

N = numero dei giorni trascorsi dall’inizio dell’anno (1° gennaio)

Dato da:
N=i t(275 —M)—Z' t(M 9>+D - 30
E'3
mn 9 mn 12
Per gli anni ordinari
N=i t(275 —M)—' t(M 9)+D 30
= * —_
mn 9 mnm 12
Per gli anni bisestili ?
Dove:

M = mese dell’anno

D = giorno del mese

Ricordiamo che anche per il Sole valgono le seguenti relazioni:
Se culmina a nord dello Zenit:

hmax + hmin
2

Se culmina a sud dello Zenit:

(p:

_ hmax + hmin
2

L int significa “parte intera”. Per il calcolo, infatti, bisogna considerare solo la parte
intera del numero...



Coordinate equatoriali del Sole

Eclittica
3

Equatore

1. Equinozio di Primavera
Il Sole si trova nel punto y (dato dall’intersezione tra I’Eclittica e
1I’Equatore), dunque nell’origine del sistema di coordinate equatoriali.

Percio le sue coordinate sono:

AR =0h €6 =0°

2. Solstizio d’Estate
Il Sole si & spostato di 90° (6 ore) dalla posizione 1 (equinozio di
Primavera) e si trova alla massima distanza dall’equatore (ricordiamo
che I’angolo tra I’Eclittica e I’Equatore vale &€ = 23° 26). Le sue

coordinate sono:

AR = 6h e § = + 23° 26’



3. Equinozio d’Autunno
Il Sole si trova nel punto w (anch’esso dato dall’intersezione tra
I’Eclittica e 1’Equatore, ma opposto al punto y). Dunque le sue

coordinate sono:

AR =12h e =0°

4. Solstizio d’Inverno
Il Sole si & spostato di 6 ore dal punto w e si trova nuovamente alla
massima distanza dall’Equatore ma al di sotto di esso. Le sue

coordinate quindi sono:

AR =18h e § = — 23° 26/



Altezza dei pianeti

Per calcolare I’altezza massima dei pianeti utilizziamo la formula:
h=90°—¢@p+9§
Dove:
=¢+i

Ricordiamo che ¢ ¢ il valore dell’obliquita dell’eclittica (23° 27’ circa) e i €
I’inclinazione dell’orbita del pianeta rispetto ad essa.

La seguente tabella riporta le varie inclinazioni orbitali di alcuni corpi
celesti:

Pianeta/Satellite i
Mercurio 7.01°
Venere 3.39°
Terra 0.00°
Luna 5.15°
Marte 1.85°
Giove 1.31°
Saturno 2.49°
Urano 0.77°
Nettuno 1.77°
(p :?i!]lélttaorgio) 17.14°

Possiamo notare che tutti i pianeti sono pressappoco allineati lungo
il piano dell’eclittica (solo Mercurio arriva a 7°).



TEMPO

Misura del tempo

La misura del tempo viene effettuata dal movimento di rotazione diurna
della volta celeste (rotazione della Terra) e dal movimento annuo del Sole
(rivoluzione della Terra attorno al Sole)?.

La rotazione della Terra attorno al suo asse & quasi costante® quindi I’angolo
di rotazione, rispetto ad un qualsiasi riferimento iniziale consente di misurare
il tempo. Come riferimento iniziale si prende I’istante del passaggio del
punto al meridiano del luogo. La durata del giorno dipende da questo punto
scelto.

In astronomia i punti adottati

o

Sono: Solevero
Sole fittizio
A #® Sole medio : fel
e ilpuntoy; i M e
e il centro del disco .
apparente del Sole (Sole w *
Vero); s -
e il Sole medio (un sole . ¢
ideale che parte dal puntoy  periete ¢~ » PR ® cquatore

assieme al Sole vero e

2 Piu precisamente, oggi la misura del tempo non & data dalla rotazione terrestre,
ma dall’oscillazione dell’atomo di Cesio-133; il secondo ¢ infatti definito, in seguito
alla decisione della Xlll conferenza generale sui pesi e sulle misure del 1967, come la
durata di 9 192 631 770 periodi della radiazione corrispondente alla transizione tra
due livelli iperfini, da (F=4, MF=0) a (F=3,MF=09), dello stato fondamentale
dell’atomo di Cesio-133 (def. confermata dalla 262 CGPM del 2018). Il secondo cosi
definito & chiamato “secondo atomico”.

3 In realtd, il periodo di rotazione della Terra, a causa delle interazioni mareali e, in
piu modesta parte, dello scioglimento dei ghiacciai alle alte latitudini, aumenta
lentamente: nel 1900, per esempio, il giorno solare medio si e allungato di 0.002
secondi atomici e di conseguenza il tempo universale accumula un ritardo rispetto
al tempo atomico di circa 1 secondo ogni 500 giorni, da cui l'introduzione,
preferibilmente in data 30 giugno e 31 dicembre, di un cosiddetto secondo
intercalare (leap second).



percorre I’equatore celeste con una velocita angolare costante, in modo da
ritornare all’equinozio di primavera assieme al Sole vero).

Le tre unita di tempo definite da questi punti si chiamano:

e giorno siderale,
e giorno solare vero,
e giorno solare medio.

Il tempo da esse misurato €:

e tempo siderale,
e tempo solare vero,
e tempo solare medio.

Nota: Non sono tempi diversi, ma solo diverse unita di
misurare il tempo!



Giorno/tempo siderale

Si  definisce  giorno  siderale
Pintervallo di tempo compreso tra
due successivi passaggi del puntoy
allo stesso meridiano del luogo.

Si  definisce  tempo  siderale
P’intervallo di tempo compreso tra il
passaggio al meridiano del punto di
primavera ad un’altra posizione
gualsiasi.

ts=H+a

5 Moto rotazione Terra
_ da un meridiano: attorno al proprio
inizio giorno sidéreo asse

@ C

Continua il moto di

Passaggio stella

La stella ripassa dallo
rotazione: sono stesso meridiano:
trascorse circa 12 ore fine giorno sidereo

L @] D

(Tempo siderale = angolo orario + ascensione retta, per un astro qualsiasi)

Giorno/tempo solare vero

direzione
del punto
— gamma

Il giorno solare vero é Pintervallo di tempo compreso

tra due passaggi superiori o inferiori del centro del

Sole.

in cielo.

Il tempo solare vero € P’intervallo di tempo compreso
tra il passaggio inferiore del Sole e il passaggio in un
altro punto qualsiasi della sua traiettoria apparente

Al meridiano il Typie pero = Hsole vero +12"



Giorno/tempo solare medio

Il giorno solare medio é I’intervallo compreso tra due passaggi superiori o
inferiori del Sole medio.

Il tempo solare medio € Pintervallo di tempo compreso tra il passaggio
inferiore del Sole medio e il passaggio in un altro punto della sua
traiettoria.

— h
Tsole medio — HSole medio +12

Equazione del tempo
Si definisce equazione del tempo la differenza tra il tempo medio ed il
tempo solare vero allo stesso istante.

E= Tsole medio ~ Tsole vero
E= HSole medio ~ HSole vero

E= Asole medio = Xsole vero

Il tempo solare medio ad un dato istante & dato dal tempo solare vero piu
I’equazione del tempo:

Tsole medio— Tsole vero +E

Componenti dell'Equazione del Tempo
minut — Eccantriots = trsfinafione w— RsulEnbe
201

| S — - - - i — - i L...
SR PRl AT AEtE  MMER  Mane Lighe  RORER  MARASE  DURE  Horeehos MRS




Relazione tra tempo solare e tempo siderale

Consideriamo la posizione del Sole a 24 ore di distanza:
t1s=Hs * a5y
t2s=Hsy + as;
Calcolando la differenza tra le due espressioni si ha:
tas- t1s = (Hsy — Hgy ) + (s -as1)
(Hy; —Hgy ) =24

Mentre la differenza in ascensione retta (as, -a,) da lo spostamento angolare

. . . . 24
diurno del sole medio sull’equatore che in gradi ¢ Jes s
Per cui:
24
- = +
tys-tis =24 h T
tye- tys = 24 (1+ ——)
2s s & 365.25
_ 366.25
tas=t1s = 24 % 50005
g . 366.25 . g A .
Un giorno solare medio = giorni siderali
365.25
g . 365.25 . g a q
Un giorno siderale = giorni solari veri
366.25
366.25 . .. -
Il rapporto K = o 1.002738 serve per convertire gli intervalli di tempo

solare medio in intervalli di tempo siderali.

AT, =K AT,,

Il rapporto K’ = et 0.997270 serve per convertire gli intervalli di tempo

siderali in intervalli ti tempo solare medio:

AT,, =K’ AT,



24 ore di tempo medio corrispondono a 24h 03m 56,55s di tempo siderale;
viceversa un giorno siderale & 23h 56m 04s di tempo solare medio.

Se s € il tempo siderale ad un certo istante ad un dato meridiano, mentre alla
mezzanotte precedente sullo stesso meridiano il tempo siderale era S, dalla
mezzanotte sono passati (s —S) ore, minuti, secondi di tempo siderale che
corrispondono a (s — S) = K’ di tempo solare medio.

Poiché a mezzanotte il tempo solare medio ¢ 0" T, = (s—S)*K’
rappresenta il tempo solare medio all’istante del tempo siderale s.

Se al meridiano di quel luogo, alla mezzanotte di una certa data il tempo
siderale era S, all’istante di tempo medio solare sara:

S=S+ T, *K

Nota:

E sempre necessario conoscere il tempo siderale S alla mezzanotte del
meridiano dato. Per questo sono stati costruiti annuari che forniscono il
tempo siderale S, alla mezzanotte del meridiano fondamentale di GW.

Il tempo siderale S alla mezzanotte ad una data longitudine A é dato da:

h

S= S, 3™M 565.55)

~oqn €



Bignamino di Astronomia

Inoltre, attorno all'equinozio di autunno (circa il 23 settembre) il Sole medio
si trova nei pressi del punto £, che in quel momento si trova al meridiano
inferiore (mentre il punto y € al meridiano superiore).

11 23 settembre corrisponde al 256° giorno del nostro calendario ed é proprio
in questa data che il tempo solare medio e il tempo siderale medio coincidono.

Percio, se contiamo il numero di giorni in tempo medio (n) trascorsi dal 23
settembre, si puo scrivere la relazione che lega il tempo medio locale e il
tempo siderale locale:

TSL — TML = 0.0657 xn

Conoscendo poi la longitudine del luogo, é possibile riferire il tempo medio
a Greenwich.



Ora locale e longitudine

Si definisce tempo locale medio il tempo regolato sul meridiano del luogo.

Nella vita quotidiana é scomodo
utilizzare questo tempo, per cui il
primo luglio 1919 sono stati
introdotti i fusi orari. In base a
guesta suddivisione il tempo
medio é determinato solo per 24
meridiani geografici principali
separati da 15° gradi (un’ora). I
fusi orari sono numerati da 0 a 23

ed il meridiano passante per GW costituisce 1’origine (fuso = 0).

Il tempo medio locale ¢ dato da:

Dove:

tl = tf AL

A= A~

Nota:

1) Ladifferenzatra le ore locali (siderali o solari) di due meridiani
misurate allo stesso istante & sempre uguale alle differenze di

longitudini;

2) Poiché i confini dei fusi orari non distano quasi mai esattamente 7°.5
dal meridiano centrale la differenza t; - t; puo essere leggermente
maggiore o minore di = 30™. Ci0 avviene per ragioni pratiche:
guando possibile, infatti, i fusi orari hanno dei confini tali da non
separare in due regioni distinte i territori di un medesimo Stato (cio
vale per Stati non troppo estesi in longitudine).



Tempo universale

Il tempo solare medio del meridiano di GW si chiama Tempo Universale
(TU)* Per quanto precedentemente detto, il tempo medio locale & uguale al
tempo universale piu la longitudine del luogo espressa in ore e considerata
positiva ad est di GW:

t;=TU+1

Anno tropico, civile, solare e siderale

Anno tropico (o solare): é il tempo che intercorre tra due passaggi
consecutivi del Sole al punto y: esso corrisponde al compimento del ciclo
completo delle stagioni.

Anno civile: viene definito con una durata di 365 giorni esatti, dove ogni
giorno é inteso come giorno solare medio. Ogni 4 anni, pero, introduciamo un
giorno aggiuntivo alla fine di febbraio portando 1’anno civile alla durata di
366 giorni (anno bisestile).

Anno siderale: € il tempo necessario affinché la Terra completi la propria
orbita attorno al Sole

4 Per essere precisi, dal 1972 usiamo il Tempo Universale Coordinato (UTC), che
scorre come il tempo atomico internazionale e che viene corretto con il famoso
secondo intercalare (vd. nota 3 sopra) quando ha uno sfasamento superiore a 0.9
secondi rispetto al tempo universale definito in questo Bignamino.



Giorno giuliano (JD)

Il giorno giuliano (JD, Julian Day) é il numero di giorni passati dal
mezzogiorno del lunedi 1° gennaio 4713 a.C. |l sistema dei giorni giuliani &
stato progettato per fornire agli astronomi un singolo sistema di date che
potesse essere usato per lavorare con differenti calendari e per unificare
diverse epoche storiche, in quanto non ha anni bisestili, cambi di calendario...
La data giuliana ¢ il giorno giuliano combinato con la frazione di giorno
trascorso, a partire dal mezzogiorno del Tempo Universale. Quando si ha a
che fare con il JD, bisogna tener conto della riforma gregoriana, tramite cui si
passo dal 4 ottobre al 15 del 1582.

PER SAPERNE DI PIU...

Per evitare le complicazioni che si manifestano quando si deve calcolare il
numero di giorni che intercorrono tra due date, Giuseppe Scaligero (1540-
1609) ided un modo diverso per indicare i giorni: la data giuliana. Scaligero
penso bene a far iniziare il conteggio dei giorni dal mezzodi del 1° gennaio
del 4712 a.C., una data cosi lontana che (o almeno cosi credeva) non fosse
possibile avere osservazioni astronomiche precedenti. Ricordiamo quindi che
il giorno giuliano inizia alle ore 12:00 UT.

Puoi calcolare il giorno giuliano corrispondente ad una
determinata data a questo link oppure scannerizzando il
QR code allegato:

http://www.archaeoastronomy.it/Calcol0%20JD/JD.html



http://www.archaeoastronomy.it/Calcolo%20JD/JD.html

TABELLA DI DATA GIULIANA

Anno | JD - Gen | Feb Mar Apr Mag Giu Lug Ago Set Oott Nov Dic
1970 | 2440 | 587 | 618 646 677 707 738 768 799 830 860 891 921
1971 | 2440 | 952 | 983 | *011 | *042 | *072 | *103 | *133 | *164 | *195 | *225 | *256 | *286
1972 | 2441 | 317 | 348 377 408 438 469 499 530 561 591 622 652
1973 | 2441 | 683 | 714 742 773 803 834 864 895 926 956 987 | *017
1974 | 2442 | 048 | 079 107 138 168 199 229 260 291 321 352 382
1975 | 2442 | 413 | 444 472 503 533 564 594 625 656 686 717 747
1976 | 2442 | 778 | 809 838 869 899 930 960 991 | *022 | *052 | *083 | *113
1977 | 2443 | 144 | 175 203 234 264 295 325 356 387 417 448 478
1978 | 2443 | 509 | 540 568 599 629 660 690 721 752 782 813 843
1979 | 2443 | 874 | 905 933 964 994 | *025 | *055 | *086 | *117 | *147 | *178 | *208
1980 | 2444 | 239 | 270 299 330 360 391 421 452 483 513 544 574
1981 | 2444 | 605 | 636 664 695 725 756 786 817 848 878 909 939
1982 | 2444 | 970 | *001 | *029 | *060 | *090 | *121 | *151 | *182 | *213 | *243 | *274 | *304
1983 | 2445 | 335 | 366 394 425 455 486 516 547 578 608 639 669
1984 | 2445 | 700 | 731 760 791 821 852 882 913 944 974 | *005 | *035
1985 | 2446 | 066 | 097 125 156 186 217 247 278 309 339 370 400
1986 | 2446 | 431 | 462 490 521 551 582 612 643 674 704 735 765
1987 | 2446 | 796 | 827 855 886 916 947 977 | *008 | *039 | *069 | *100 | *130
1988 | 2447 | 161 | 192 221 252 282 313 343 374 405 435 466 496
1989 | 2447 | 527 | 558 586 617 647 678 708 739 770 800 831 861
1990 | 2447 | 892 | 923 951 982 | *012 | *043 | *073 | *104 | *135 | *165 | *196 | *226
1991 | 2448 | 257 | 288 316 347 377 408 438 469 500 530 561 591
1992 | 2448 | 622 | 653 682 713 743 774 804 835 866 896 927 957
1993 | 2448 | 988 | *019 | *047 | *078 | *108 | *139 | *169 | *200 | *231 | *261 | *292 | *322
1994 | 2449 | 353 | 384 412 443 473 504 534 565 596 626 657 687
1995 | 2449 | 718 | 749 777 808 838 869 899 930 961 991 | *022 | *052
1996 | 2450 | 083 | 114 143 174 204 235 265 296 327 357 388 418
1997 | 2450 | 449 | 480 508 539 569 600 630 661 692 772 753 783
1998 | 2450 | 814 | 845 873 904 934 965 995 | *026 | *057 | *087 | *118 | *148
1999 | 2451 | 179 | 210 238 269 299 330 360 391 422 452 483 513
2000 | 2451 | 544 | 575 604 635 665 696 726 757 788 818 849 879

* (questo simbolo indica che il “prefisso” del giorno riportato nella colonna “JD-” ¢

aumentato di 1)

Es: 16 novembre 1984 = 2446005 + 16 = 2446021 JD

Le date riportate in tabella si riferiscono al giorno 0 del mese




MECCANICA CELESTE

Moto apparente dei pianeti

| pianeti si muovono in vicinanza dell’eclittica, ma il loro movimento visto
dalla Terra é piu complicato di quello del Sole e della Luna. Il Sole e la Luna,
rispetto alle stelle fisse, si muovono di moto diretto, cioé antiorario. Per i
pianeti si osserva, in generale, che essi si muovono di moto diretto; tuttavia,
in alcuni tratti, variabili da pianeta a pianeta, il loro moto & retrogrado: il
pianeta, dopo avere raggiunto una
posizione di stazionarieta, inverte
il moto, descrivendo una
traiettoria tipicamente a forma di
cappio. Cio &€ molto piu evidente
per i pianeti interni Mercurio e
. Venere, che oscillano avanti e
Elongazione Elongazione - . ..
est ovest indietro rispetto alla posizione del
Congiunzione Sole, venendosi a trovare ora da
inferiore una parte ora dall’altra rispetto ad
esso. Quando il pianeta € in
congiunzione  superiore €
invisibile, perché sorge e tramonta
con il Sole. Continuando nel suo
moto apparente, dopo qualche
tempo potra essere visto dopo il tramonto ad occidente (si trovera a sinistra
del Sole). L’elongazione orientale (cioé la distanza angolare del pianeta dal
Sole quando il pianeta si trova a sinistra del Sole) cresce nei giorni seguenti;
contemporaneamente, per0, decresce la sua velocita angolare apparente.
Quando il pianeta raggiunge la stessa velocita angolare del Sole, per qualche
istante si muove mantenendo la stessa distanza angolare dall’astro diurno: il
pianeta ha in questo momento raggiunto la massima elongazione orientale.
Per Venere la massima elongazione é di circa 46°, per Mercurio varia dai 18°
ai 28°. Da questo momento il pianeta comincia il suo avvicinamento al Sole
ritornando, con moto retrogrado, in congiunzione con esso ma questa volta in
configurazione di congiunzione inferiore. 1l pianeta & adesso invisibile, a
meno che esso non transiti sul disco del Sole: in questo caso, con opportuni
strumenti (come ad esempio un telescopio), e possibile osservarne il disco che
si proietta su quello del Sole! Continuando nel suo moto retrogrado, il pianeta

Congiunzione
superiore




si sposta via via verso occidente (a destra del Sole) ed é visibile prima del
sorgere del Sole (elongazione occidentale).

La figura alla pagina precedente mostra che i pianeti inferiori non possono
mai trovarsi in quadratura o opposizione, cio¢ I’angolo Sole-Terra-Pianeta
non potra mai essere uguale rispettivamente a 90° o 180° (in generale,
quest’angolo non potra mai essere piu grande dell’elongazione massima,
nettamente inferiore a 90°).

| pianeti esterni invece possono assumere qualsiasi distanza dal Sole (da 0° a
180°) e quindi possono trovarsi nelle

due precedenti configurazioni.

Raggiunta I’elongazione massima di Congiunzione

180°, il pianeta si trova dalla parte
opposta a quella del Sole, la velocita
retrograda € massima ed esso
raggiunge anche il massimo della
luminosita.

Quadratura Quadratura

Oggi noi sappiamo che il moto
apparente dei pianeti ¢ il risultato
della composizione del moto della Opposizionc

Terra e di quello dei pianeti attorno

al Sole: semplicemente cid vuol dire

che noi osserviamo un oggetto in

movimento essendo noi stessi in movimento. Le velocita dei pianeti variano:
pit sono vicini al Sole, piu velocemente si muovono. | due pianeti interni,
essendo piu vicini al Sole, sorpassano la Terra durante il loro moto, mentre &
la Terra a sorpassare i pianeti esterni quando sono vicini all’opposizione: ecco
perché essi sembrano muoversi all'indietro.

Se indichiamo con T il nostro anno siderale, con P il periodo sidereo del
pianeta e con S il periodo sinodico (il tempo intercorso tra due congiunzioni
0 due opposizioni successive) la composizione delle velocita ci consente di
calcolare la velocita relativa del pianeta rispetto alla Terra.

Per i pianeti interni (la Terra si muove piu lentamente):

2w _ 2w 2m

S P

T
1 1
S T

SR



Per i pianeti esterni (la Terra si muove pit velocemente):

2w _ 2w 2m

1
S

S T

1
T

P

TR

Marte, Giove e Saturno (i pianeti esterni visibili ad occhio nudo) si possono
trovare dungue in qualsiasi posizione lungo I'eclittica - anche a mezzanotte,

* fig. 1

in posizione direttamente opposta a
quella del Sole -: quando questo
avviene raggiungono il massimo
della luminosita. Marte sembra
muoversi piu rapidamente, Giove un
po' meno, e Saturno é il piu lento. La
loro velocita varia: pit sono vicini
al Sole e pil rapidamente si
muovono (vedi la sezione “terza
legge di Keplero”). Quando i tre
pianeti  esterni  sono  vicini
all'opposizione, la Terra, che orbita
pit vicina al Sole, li sorpassa, e
quindi essi sembrano muoversi
all'indietro. 1l moto retrogrado dei
due pianeti interni ha una causa
simile. Essendo piu vicini al Sole,
sono essi che sorpassano la Terra
durante il loro moto.



TRA CONCILI E CONGIUNZIONI SINODICHE...

Il termine “sinodico” deriva dal latino
synodicum, a sua volta ricavato dal greco
ovvodikog (synodikos) derivato da cvvodog
(synodos) “riunione, concilio”, le cui radici
SON0 g UV «Con, insieme» e 066¢ «via» e quindi
camminare insieme, allinearsi...




Sommario di quanto é noto oggi sui pianeti

Viene qui riportato un breve sommario dei componenti del sistema solare. In
genere vengono distinte quattro classi di oggetti:

1.

| pianeti maggiori, in ordine di distanza dal Sole - Mercurio, Venere,
Terra, Marte, Giove, Saturno, Urano e Nettuno. Tutti tranne i due
pit interni hanno dei satelliti, e tutti e quattro i piu esterni hanno degli
anelli, composti da piccoli ciottoli di materia in orbita attorno al
pianeta.

Asteroidi o pianetini, in maggioranza - anche se non tutti - posti tra
Marte e Giove. Il loro diametro arriva fino a 500 km.

La "fascia di Kuiper" composta da oggetti ghiacciati oltre I'orbita di
Nettuno, di cui il pit noto (anche se secondo per dimensioni, come
recentemente scoperto) & Plutone, scoperto nel 1930 e delle
dimensioni della nostra Luna. La fascia ha preso il nome
dell'astronomo belga Gerard Kuiper, si estende probabilmente a una
distanza doppia di quella di Nettuno e si stima che consista di circa
100 000 oggetti (finora ne sono stati identificati circa 1 000), molti
dei quali con un diametro di soli 100 km o meno.



4. Comete, tradizionalmente divise in "'non ricorrenti" (il nome ufficiale
e "comete a lungo periodo") e comete "periodiche". Si ritiene che le
comete non ricorrenti provengano dalla "nube di Oort", un enorme
agglomerato quasi sferico di oggetti ghiacciati agli estremi limiti del
sistema solare. Tali oggetti sono debolmente legati al Sole e, di tanto
in tanto, l'attrazione gravitazionale di qualche stella lontana cambia
lievemente il moto di alcuni di essi, lanciandoli in direzione del Sole.
Se si verifica tale eventualita, essi diventano visibili come comete,
guando la radiazione del Sole fa evaporare una parte della loro
superficie generando la chioma e la coda della cometa. Un tempo le
comete periodiche si ritenevano oggetti inizialmente non ricorrenti,
la cui traiettoria era poi stata deviata facendo si che esse venissero
catturate dall'attrazione gravitazionale dei pianeti piu grandi. Oggi si
ritiene che provengano dalla fascia di Kuiper, in particolare dalla
classe di oggetti noti come Centauri.



Moti millenari della Terra

Oltre ai moti di rotazione e rivoluzione, la Terra é soggetta anche a movimenti
che si sviluppano su lunghissimi intervalli di tempo, noti come moti
millenari. Questi fenomeni sono causati principalmente dall’azione
gravitazionale esercitata dal Sole, dalla Luna e dagli altri pianeti del Sistema
Solare. I moti millenari si suddividono in due grandi categorie:

Variazioni dell’asse di rotazione. L’asse di rotazione della Terra,
0ggi, € inclinato di circa 23.5° rispetto al piano dell’orbita terrestre,
I’eclittica. Questa inclinazione non & costante: varia lentamente, in
un periodo di circa 41.000 anni, da 22.1° e 24.5. In circa 26.000 anni,
la direzione verso cui punta I’asse cambia spostando il polo celeste da
una stella all’altra. Il fenomeno che descrive questa rotazione
millenaria dell’asse terrestre € detto precessione.

POLARE VEGA
— __ (ATTUALE) _ __»— — _ _ (NEL14.000DC)
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. \ (NEL 3.000AC) /
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DELL'ASSE TERRESTRE  __L__ /" pr11'ASSE TERRESTRE
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EQUATORE N

DELL'ECLITTICA

Durante il moto di rivoluzione attorno al Sole, ’asse di rotazione
terrestre tende a mantenere la propria orientazione nello spazio.
Questo comportamento € spiegato dalla conservazione del momento
angolare, una grandezza vettoriale che, in assenza di forze esterne, si
mantiene costante in modulo, direzione e verso. La Terra, ruotando
Su se stessa, si comporta come un giroscopio: resiste alle
sollecitazioni che tentano di modificarne 1’assetto rotazionale,
mantenendo stabile il proprio asse. Tuttavia, la Terra non € una sfera
perfetta: ha la forma di un ellissoide oblato, cioé leggermente
schiacciata ai poli e rigonfia all’equatore. Questo rigonfiamento
equatoriale é il risultato della rotazione terrestre e rappresenta una



massa eccedente rispetto alla forma sferica. Le forze gravitazionali
esercitate dal Sole, dalla Luna e, in misura minore, dagli altri pianeti,
agiscono su questa massa eccedente in modo differenziale:
I’attrazione ¢ piu intensa sull’equatore che sui poli. Ne deriva una
coppia di forze che genera un momento torcente che agisce
perpendicolarmente al momento angolare e tende a riallineare 1’asse
di rotazione perpendicolarmente al piano dell’eclittica. Il nostro asse
di rotazione, ruotando, genera una risposta dinamica e, invece di
riallinearsi alla perpendicolare all’eclittica, Si muove attorno ad esso
di moto circolare. Questo fenomeno € noto come precessione assiale.
L’asse terrestre Sembra descrive un cono nello spazio, con vertice al
centro della Terra, completando un giro completo in circa 26.000
anni, periodo chiamato anno platonico.

Poiché 1’equatore celeste ¢ perpendicolare all’asse terrestre,
anch’esso segue il moto di precessione, modificando gradualmente la
sua orientazione rispetto alle stelle fisse. Di conseguenza, anche la
linea degli equinozi, I’intersezione tra 1’equatore celeste e il piano
dell’eclittica, ruota nello spazio con la stessa velocita angolare
dell’asse ed il punto vy, intersezione tra I’equatore celeste ed 1’eclittica
che definisce I’equinozio di primavera ed ¢ stato assunto come origine
del sistema equatoriale, anticipa di 50.3 secondi d’arco ogni anno, per
cui il Sole incontra il punto y ogni anno in anticipo rispetto all'anno
precedente, da cui il termine “precessione degli equinozi”.

Ai tempi di Ipparco il Sole, all’equinozio di primavera, si proiettava
nella costellazione d’Ariete, oggi nei Pesci, la prossima sara la
costellazione dell’ Acquario che, appunto, precede la costellazione dei
Pesci. Il polo nord celeste, che oggi cade abbastanza vicino alla stella
Alpha dell’Orsa Minore, tra 14.000 anni si trovera in vicinanza della
stella VVega della costellazione della Lira.

La precessione luni-solare. E dovuta per 2/3 circa alla Luna ed il
restante 1/3 al Sole. L’orbita che la Luna percorre attorno al nostro
pianeta non e complanare alla nostra. La interseca in due punti, i nodi,
e I’angolo tra i due piani e di circa 5°. Varia nel tempo, e determina
una consistente variazione della posizione del piano orbitale del
nostro satellite: il fenomeno che ne deriva ¢ la retrogradazione dei
nodi. Per effetto di questa variazione il momento della quantita di
moto della Terra non ruota in modo uniforme attorno all’asse
dell’eclittica e conseguentemente, il polo nord celeste non si muove
di moto circolare uniforme ma presenta un moto oscillatorio, che lo
porta ad avvicinarsi e ad allontanarsi dal polo nord dell’eclittica.



Questo fenomeno prende il nome di nutazione, ha un periodo di 18.6
anni coincidente con il periodo di retrogradazione dei nodi.

La comprensione del moto di precessione e essenziale per lo studio della
dinamica terrestre, in quanto comporta importanti conseguenze in ambito
astronomico. Nel corso dei millenni, esso determina una variazione della
posizione apparente delle stelle nel cielo, modifica progressivamente la
data degli equinozi e incide sulla misurazione del tempo, influisce sul
clima su scala geologica modificando la distribuzione stagionale della
radiazione solare, contribuendo ai cicli glaciali e interglaciali descritti
dalla teoria di Milankovié.

_—

Precessione

@ Nutazione

Rotazione



Le leggi del moto dei pianeti

Prerequisito: Dellisse

Luogo geometrico dei punti del piano per i quali si mantiene costante la
somma delle distanze da due punti fissi detti fuochi.

C
a blb a
Al c C
F1 72 |5

D
C
e=—
a

FORMULE INVERSE:
Cc = ae
C
a=-
e

Infatti, nell'ellisse possiamo individuare:

e Semiasse maggiore (a)
e Semiasse minore (b)
¢ Semidistanza focale (c)

Detta in parole piu
semplici, l'ellisse non &
altro che una circonferenza
“schiacciata". Un elemento
fondamentale  che ci
permette di capire di
quanto  questa  viene
compressa & l'eccentricita
e. L'eccentricita € definita
come il rapporto tra la
semidistanza focale e il
semiasse maggiore:

Indicheremo quindi con 2a il semiasse maggiore (AB), con 2b il semiasse

minore (CD) e con 2c la distanza focale (FiF>).



ATTENZIONE:

L’eccentricita dell'ellisse ¢ SEMPRE compresatra0e 1 (0 <e <1). Se questa
fosse uguale a 0, i due fuochi andrebbero a coincidere con l'origine e I'ellisse
diventerebbe una circonferenza. Se fosse uguale a 1, diventerebbe una
parabola; se fosse e > 1 diventerebbe una iperbole.

Dando un’occhiata alla figura, si nota che la somma delle distanze dai due
punti fissi detti fuochi non € solo costante, ma é anche pari alla lunghezza
dell'asse maggiore (2a). Quindi, si pud anche applicare il teorema di
Pitagora®:

a? = b? + c?

FORMULE INVERSE:

b2 = q? — (2

F1 F2

D

5 Poiché (vd. figura): CF, = CF,, CF,; + CF, = 2a i pud scrivere come 2CF, = 2a.
Semplificando: CF, = a



LE LEGGI DI KEPLERO
Prima legge di Keplero

Enunciato: i pianeti descrivono intorno al Sole orbite ellittiche, in cui
guesto occupa uno dei fuochi.

Si pud quindi notare
che la distanza di un
h pianeta attorno al

L Sole non si mantiene
afelio perielio costante, bensi ci
sara un punto in cui
questo sara  piu
vicino al  Sole
(perielio) e uno in
Cui sara piu lontano
(afelio).

Possiamo quindi calcolare le due distanze:

d,=a(l+e)
dp=a(l—e)
FORMULE INVERSE:
a_1+e
d
__“p
a_l—e
d
e=—-—1
a
d
e=1--2



Inoltre, si nota anche che dalla somma delle due distanze otteniamo I'asse
maggiore dell'orbita:

2a=d,+d,

E il semiasse € quindi dato da:

d, +d,
=T
FORMULE INVERSE:
dg =2a—-d,
dp =2a—d,

La distanza focale & data dalla differenza delle due distanze:

2c=d,—d,
d, —dy
c=—%
FORMULE INVERSE:
dg =2c+d,
d, =dq—2c

Quindi I'eccentricita dell’orbita puo essere anche scritta come:

_dg—d, Zc

‘T4 +d, 2a




Seconda legge di Keplero

Enunciato: il raggio vettore che congiunge il Sole al pianeta spazza aree
uguali in tempi uguali

60 giorni

Dalla seconda legge comprendiamo che la
velocita del pianeta intorno al Sole non €
costante: al perielio viaggera piu velocemente
che all'afelio. Quindi, si pud affermare che le
velocita sono inversamente proporzionali alle

distanze:
60 giorni
Vo d,
o d
FORMULE INVERSE:
d,V,
po=r
a da
Vo dg
V. =
14 dp
Vv, d
d. =%
a Va
d. = Va da
=

—



Terza legge di Keplero

Enunciato: i cubi dei semiassi maggiori sono proporzionali ai quadrati dei
periodi di rivoluzione

Dalla terza legge, si
nota che esiste una
relazione tra periodo di rivoluzione e lontananza dal corpo centrale. Sono
infatti legati tra loro dal valore di una costante che é stata indicata con k.

Per i corpi orbitanti intorno ad una massa comune (come ad esempi 0 per i
corpi del Sistema solare) questa legge puo essere anche scritta come:

PER | CORPI DEL SISTEMA SOLARE (che orbitano intorno al Sole),
se si inserisce in formula il valore del semiasse maggiore in unita
astronomiche (UA) e il periodo di rivoluzione in anni, il valore della costante
e uguale a 1. Infatti, ricavandola per la Terra:

1vay®
(1 anno)?

E se k = 1 per la Terra, vale per tutti gli altri corpi orbitanti intorno al Sole.



LEGGE DI GRAVITAZIONE UNIVERSALE

Con le leggi di Keplero siamo ancora in quella parte di fisica che descriviamo
come cinematica: descriviamo perfettamente i moti dei pianeti ma non
risaliamo alle cause. Newton avanzo 1’ipotesi che sia i gravi in caduta libera
che i pianeti vengono deviati dalla condizione di moto rettilineo uniforme
dall’esistenza di una forza centrale. Nel 1684 Newton, “poggiandosi sulle
spalle dei giganti” (Keplero ed il nostro Galilei), dimostro che la forza che fa
“fluttuare” i pianeti attorno al Sole dipende dall’inverso del quadrato della
distanza da esso.

Integrando il suo secondo principio della dinamica con la terza legge di
Keplero perviene a:

2

_4n?m

Eg‘ K12
Questa forza deve dipendere anche dalla massa M del Sole ed allora:

_4n? mM
9 MKr?

Dove K & la costante della terza legge di Keplero. Ponendo la quantita:

47?

T

(notare che contiene la costante K e la massa del Sole) otteniamo la nota
formula:

G mM
Fy = r2
R E g Newton dedusse che questa legge e valida
non solo per i corpi del sistema solare ma in

tutto I’Universo: ¢ la Legge di Gravitazione

r . A
Universale. Nel 1798 Cavendish ideo la

R m;x m, bilancia a torsione e trovo il valore per la

oo r costante G = 6,67 x 10™'* N m?/kg? .

51l valore della costante G, misurato in seguito da diversi esperimenti, & rimasto oggi
praticamente lo stesso con solo poche cifre decimali in pil:
6.67384(80) * 10~ *ecc ecc...



TERZA LEGGE DI KEPLERO GENERALIZZATA

Approssimando I’orbita di un corpo a circolare e considerando trascurabile
la massa del corpo orbitante, la condizione di equilibrio per la quale esso
orbita é data da:

Fc=Fg
Forza centrifuga = Forza gravitazionale
La forza centrifuga é espressa come:
Fc=ma,

E quella gravitazionale (dalla legge di gravitazione universale di Newton)
come:

GMm
Fg = Py
Sostituendo in formula:
GMm
Mbe =~z

Notiamo che, semplificando m, otteniamo un modo per esprimere
I’accelerazione:

Ma tale accelerazione, essendo essa centripeta, equivale anche a:

v?  4m2a?  4Anla
G =0 T Tr2q T T2
Sostituendo in formula:
4n2a GM
T2~ a?
Da cui:
a> GM



FORMULE INVERSE:

Nota: nel caso in cui la massa del corpo orbitante non fosse trascurabile, la
terza legge di Keplero generalizzata diventerebbe:

d® G (M+m)
T2 472

Nel Sistema solare la somma delle due masse si considera uguale alla sola
massa del Sole data la relativa piccola massa dei pianeti.

NOTA:

I corpi lasciati cadere verso il basso, quando la resistenza dell’aria &
trascurabile, cadono con la stessa accelerazione g, detta accelerazione di
gravita. Sulla superficie terrestre I’accelerazione di gravita ¢ g = 9,8 m/s2. In
realta il valore di g cambia da punto a punto, perché dipende fra 1’altro
dall’altezza del punto sul livello del mare e dalla sua latitudine. Ora che
conosciamo la legge di gravitazione universale possiamo dire che i corpi
cadono per effetto della forza di gravitazione che si esercita tra il corpo e la

Terra. Allora:
GM
I=a



a wia

0,=GM

r=a, Y% w?a,
g=CAL .,

)

All’Equatore

Se il corpo si trova sulla Terra
0 prossimo alla superficie,
sostituendo a questa formula i
valori relativi alla massa della
Terra e al suo raggio troviamo
per 1’accelerazione il valore
noto di 9.8 m/s?,

Un altro fattore che influisce
sul valore di g é la rotazione
terrestre in quanto ogni corpo
su di essa & soggetto ad una
forza centripeta per cui:

g =g — Ry

I “In veritd non sono riuscito a dedurre la causa di
| queste proprieta della gravita dai fenomeni, e non

| avanzo ipotesi.”

i Isaac Newton, Philosophiae Naturalis Principia
i Mathematica, liber tertius

“Rationem vero harum |
Gravitatis proprietatum |
ex phaenomenis nondum |

potui deducere, & '

hypotheses non fingo.” !

e e e e e e e — Jd



Una precisazione sulla Terza legge di Keplero generalizzata...

Forza centrifuga o centripeta?

TUTTO DIPENDE DAL SISTEMA DI RIFERIMENTO SCELTO!

Nel calcolo dell’espressione della terza legge di Keplero generalizzata
abbiamo uguagliato la legge di gravitazione universale alla forza centrifuga
perché ci siamo posti in un sistema di riferimento non inerziale, che ruota
assieme al pianeta.

Il pianeta ruota, quindi ha un’accelerazione non nulla: il nostro sistema ¢
accelerato rispetto ad un altro che ha origine nel centro del Sole. In un sistema
non inerziale agiscono forze apparenti. Nel sistema di riferimento da noi
scelto, la forza apparente che tiene il pianeta su un’orbita circolare & quella
centrifuga, che € una forza fittizia uguale ed opposta a quella centripeta che
lo manterrebbe nella sua orbita se fosse osservato da un punto fisso dello
spazio.

Esempio:

Consideriamo un'auto che prende una curva, vista da un osservatore sulla
strada, che & sistema inerziale. L'auto non slitta: € mantenuta sulla sua
traiettoria dalla forza di attrito statico tra il suolo e le ruote, che ha il ruolo di
forza centripeta. L’auto € accelerata: il passeggero si trova dentro un sistema
non inerziale, quindi sentira I'effetto di una pseudoforza, cioé la forza
centrifuga che é diretta in verso opposto alla forza centripeta menzionata in
precedenza. Infatti, quando la nostra auto prende una curva ci sentiamo spinti
verso 1’esterno, nonostante non ci sia nessuno che materialmente ci spinge!

L’osservatore esterno dira:

| passeggeri, per il principio
d’inerzia, tendono a mantenere
inalterata la propria velocita,
opponendo una certa
“resistenza” o inerzia ad
assecondare la curva



Puo dire cosi perché nel suo sistema di riferimento i
passeggeri hanno una velocita non nulla, quella dell'auto
che li trasporta!

Il passeggero dira:

Prima ero fermo rispetto alla
mia macchina, ora sto
cominciando a muovermi
verso l'esterno, quindi sto
accelerando... in effetti sento
qualcosa che mi spinge verso
I’esterno da un lato, sento
I'effetto di una forza, anche se
nessuno mi sta spingendo!

E la pseudoforzal

Si perviene all’espressione della terza legge di Keplero generalizzata
utilizzando I’una o I’altra forza.



Limite di Roche

Il limite di Roche ¢ la distanza minima dal centro di un corpo celeste al di
sotto della quale un secondo corpo celeste minore che vi orbita intorno si
frammenta a causa delle forze di marea.

O e|0Oe® |O=,

Quando un pianeta nelle fasi appena successive alla sua formazione é avvolto
da un disco di frammenti, la materia oltre il limite di Roche pu0 aggregarsi
formando uno o piu satelliti, mentre all’interno di tale limite le forze di marea
impediscono la formazione di satelliti sufficientemente grossi. Questo si é
verificato nel Sistema solare nei 4 pianeti che presentano gli anelli (Giove,
Saturno, Urano e Nettuno). Per ciascuno di essi, gli anelli si trovano
internamente al valore del limite di Roche calcolato per ogni pianeta.

— e e—— e— ————

Per quanto riguarda Saturno, fu Edouard
I Albert Roche, studiando i suoi anelli, a I
I verificare che il limite di Roche si
posizionava appena al di fuori dell’anello I
I pit esterno. Come ulteriore conferma, le I
sonde Voyager mostrarono che gli anelli
non sono corpi compatti, ma composti da I
cristalli di ghiaccio. |



Immaginiamo una cometa costituita da due sfere di raggio r e massa m. Basta
pensare a due palle di neve sporche, ognuna di raggio r, tenute insieme dalla
forza di gravitazione universale che ognuna esercita sull’altra. Questa forza e
data dalla relazione di Newton:

2 2

Gmm _ Gm _ Gm
dz — (2r)2  4r?

Fate =

Consideriamo adesso che la cometa si trovi ad una distanza x da un pianeta di
massa m e raggio r. La forza di attrazione gravitazionale F, tra il pianeta e la
palla di neve piu vicina, sara piu grande della forza F’ che il pianeta esercita
sulla palla piu lontana. Quindi:

GMm

L GMm
C(x+2r)2

Le due palle risentiranno di una forza risultante (F,,,,-) che tende a separarle.
Questa forza equivale alla differenza F* — F. Si ha dunque:

Fnar =F — F'

E _ GMm GMm
mar = y2 (x + 2r)2

Poiché >> r:
4GMmr

mar



Le due masse si separeranno se la forza F,,,,- € superiore alla forza F;;:

Enar > Fait
AGMmr S Gm?
x3 472
Cambiamo di segno:
4Mr < m
x3 472
M < m
x3 1613
Ponendoci al “limite”:
_m
x3 1613
3 16r3M
xX° = —
m

3 M
x= [16r3—
m
Estraendo dalla radice”:

3
x=244r

SRR

Questa ¢ la formula nota come Limite di Roche.

7 Non vi preoccupate: 2.44 non é la radice cubica di 16! Il calcolo del limite di Roche
e compresso e il suo risultato non puo essere rappresentato in una formula algebrica
esatta. Lo stesso Roche ha derivato la sua soluzione in modo approssimato,
inserendo il coefficiente 2.44 perché teneva meglio conto dell’oblazione del primario
e della massa del satellite.



Ricordiamo che:
r = raggio del corpo minore (nel nostro caso, la cometa)
M= massa del pianeta

M=massa del corpo minore

Ora, esprimendo le masse in funzione del volume e della densita:

4
M=Vp= §nR3p

4 3
m = Vepc =§7TT Pc

La formula diventa:




Bignamino di Astronomia

Dove:
R = raggio del pianeta
p= densita del pianeta

p.= densita del corpo minore (nel nostro caso, della cometa)

ATTENZIONE!

La formula si applica solo su corpi
“incoerenti”, cio¢ non compattati.
Infatti nella formula consideriamo
solo la forza mareale e
gravitazionale, non considerando le
forze di coesione della materia...
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Sfera di Hill

La sfera di Hill (il cui raggio € detto raggio di Hill) indica le dimensioni
della sfera di influenza gravitazionale di un corpo celeste rispetto alle
perturbazioni di un altro corpo, di massa maggiore, attorno al quale esso
orbita. E stata definita dall'astronomo americano George William Hill
(1838- 1914), sulla base del lavoro dell'astronomo francese Edouard Roche
(1820-1883). Per questaragione e anche conosciuta come la Sfera di Roche.
Considerando un corpo centrale attorno al quale orbita un secondo corpo,
la sfera di Hill & determinata dalle seguenti forze:

e Gravita dovuta al corpo centrale;

e Gravita dovuta al corpo secondario;

e Forza centrifuga misurata in un sistema di riferimento avente
origine sul corpo centrale e ruotante con la stessa velocita angolare
del secondo corpo.

La sfera di Hill é la pit grande sfera, centrata sul secondo corpo, al cui
interno la somma delle tre forze e sempre orientata verso il secondo corpo.
Un terzo corpo piu piccolo pud orbitare intorno al secondo all'interno della
sfera di Hill, con questa forza risultante come forza centripeta.

La sfera di Hill si estende fra i punti di Lagrange L1 e L22, che si trovano
sulla linea che congiunge i centri dei due corpi. La regione di influenza del
secondo corpo é piu piccola lungo quella direzione e funge da fattore di
limitazione per la dimensione della sfera di Hill. Oltre quella distanza, un
terzo oggetto in orbita intorno al secondo spenderebbe almeno parte della
relativa orbita oltre la sfera di Hill e verrebbe progressivamente perturbato

8 Nel problema dei tre corpi, i punti di Lagrange, tecnicamente chiamati punti di
oscillazione, sono quei punti dello spazio in cui due corpi dotati di grande massa,
tramite l'interazione della rispettiva forza gravitazionale, consentono ad un terzo
corpo dotato di massa molto inferiore di mantenere una posizione stabile
relativamente ad essi. In un sistema planetario comporta che un piccolo oggetto
(satellite o asteroide), il quale condivide la stessa orbita di un pianeta e posizionato
in un punto di Lagrange, manterra costanti le distanze fra i corpi celesti maggiori
(stella e pianeta). Perché cio accada, la risultante delle accelerazioni gravitazionali
impresse dai corpi celesti all’'oggetto deve essere esattamente |’accelerazione
centripeta necessaria a mantenere in orbita I'oggetto a quella particolare distanza
(dal corpo celeste piu grande), con la stessa velocita angolare del pianeta piu piccolo.
Questi punti sono detti di Lagrange in onore del matematico Joseph-Louis de
Lagrange che nel 1772 ne calcolo la posizione.



dalle forze di marea del corpo centrale, finendo per orbitare attorno a
quest'ultimo.

ATTENZIONE:

Non confondere la Sfera di Roche (per semplicita e per non creare confusione
ci riferiremo a essa con il nome di Sfera di Hill) con il Limite di Roche
descritto in questo Bignamino!

Formule

Se un corpo minore di massa m, orbita attorno ad uno maggiore di
massa M con un semiasse maggiore a e una eccentricita di e, allora il
raggio r della sfera di Hill del corpo minore é:

3| M
~a(l— /—
ra(l—e)=* M

Se ’eccentricita € trascurabile:

Piccola esercitazione: Quale periodo massimo pud avere un ipotetico
satellite stabile della Terra? [Suggerimento: il raggio della Sfera di Hill &
il raggio orbitale massimo che puo avere un satellite stabile, quindi...]

E doveroso sottolineare come la sfera di Hill rappresenti solamente
un’approssimazione della effettiva regione di stabilita orbitale e altre forze
(per es. la pressione di radiazione) possono perturbare 1’orbita dell’ oggetto.
Inoltre il terzo oggetto deve avere una massa trascurabile rispetto agli altri
due, in maniera da non influenzare il sistema con la propria gravita.



Considerazioni sulle orbite (coniche)

La Legge della Gravitazione Universale ci insegna che la forza d’attrazione
gravitazionale € inversamente proporzionale al quadrato della distanza delle

. 1 . ..
due masse che si attraggono, ovvero F o« —3acausa di questa caratteristica

dell’interazione gravitazionale si pud dimostrare che le orbite descritte dai
corpi celesti attorno a un oggetto “attrattore” seguono particolari curve, le
coniche. Le coniche sono curve che si ottengono dall’intersezione di un piano
con un cono a due falde. Si ottengono cosi circonferenza, ellisse, iperbole e
parabola.

Circonferenza: il piano ¢ perpendicolare all’asse (tratteggiato);
Ellisse: il piano é obliquo;

Parabola: il piano € parallelo a una delle generatrici (le due rette
incidenti in V in figura);

Iperbole: il piano & parallelo all’asse del cono.

Cio che distingue 1’una dall’altra queste curve ¢ un parametro, 1’eccentricita:

CIRCONFERENZA: e =0

ELLISSE: 0<e<1 (piu -—
questo valore si avvicina ad 1
piu I’ellisse € schiacciata)

PARABOLA: e =1

IPERBOLE: e > 1 (quanto
piu maggiore di uno é questo
valore tanto piu 1’iperbole ¢
“aperta”)

Cerchio Ellisse Parabola Iperbole



Velocita orbitale

Affinché il corpo rimanga in orbita € necessario che in ogni punto dell’orbita
la forza centripeta sia uguale alla forza di attrazione gravitazionale:

FC:FG

v:  GmM
MR~ R
VZ_GmM
BR TR
GM

2 _ 7

VTR
_ |em

V=R

A guesta velocita si da il nome di prima velocita cosmica, valida per orbite
circolari.

E SE L’ORBITA NON E CIRCOLARE?

Il problema si risolve con 1’applicazione del principio di conservazione
dell’energia meccanica che altro non ¢ che la somma dell’energia cinetica e
dell’energia potenziale.

K1+U1:K2+U2

E poiché le velocita orbitali variano al variare dalla distanza alla prima
equazione € necessario associare la seconda legge di Keplero.

Per cui il problema é risolto dalla soluzione del sistema:

K1+U1=K2+U2
{ Ve dy = vpd,



N . TN MG
Nel caso della forza gravitazionale, 1’energia potenziale e U = — mT

. g . N 1
L’energia cinetica e K= Emv2

Il sistema diventa:

Le soluzioni sono:

2GM da
v, = -—
p d,(d, +d,)

) dg+d do—d
Ricordando che: dy =a(l1+e); d, =a(l—e)a=— Lie= da+dz

Le due velocita possono anche essere espresse in funzione del semiasse
maggiore e dell’eccentricita dell’orbita.

Quindi :




Considerazioni sulle orbite (dinamica)

All’inizio di questi appunti abbiamo evidenziato come gli oggetti orbitanti
seguano delle traiettorie che sono curve coniche e abbiamo individuato
quest’ultime, catalogandole anche a seconda dell’eccentricitd; in seguito
abbiamo enunciato il principio di conservazione dell’energia meccanica:

K + U = costante

Possiamo procedere nella classificazione delle orbite a seconda del valore
assunto da questa costante (1’energia meccanica). In particolare:
e Sequesta costante e negativa, allora I’oggetto segue un’orbita chiusa
(circonferenza, ellisse);
e Seessa é nulla, allora il corpo si muove su un’orbita parabolica (a
distanza infinita la sua velocita é nulla);
e Seessa e positiva, allora la traiettoria e iperbolica (e il corpo giunge
a distanza infinita con velocita — chiamata “velocitd d’eccesso
iperbolico” — non nulla).

Velocita di fuga

_ |26m
Y= "R

A questa velocita si da il nome di seconda velocita cosmica o velocita di fuga.



Raggio di Schwarzschild

Immaginiamo ora di poter comprimere un corpo celeste di massa M (quindi
via via il raggio R diminuisce): la velocita di fuga di un altro corpo dalla sua
superficie aumentera al diminuire del raggio. Quando il raggio raggiungera
un valore “critico”, la velocita di fuga eguagliera quella della luce, e neanche
la luce potra allontanarsi indefinitamente dal corpo: esso € diventato un buco
nero.

Al raggio “critico” associato a ogni massa M si da il nome di Raggio di
Schwarzschild, in onore del matematico, astronomo e astrofisico tedesco Karl
Schwarzschild (1873-1916); il raggio si ricava cosi:

26M , 2GM
ce =

c = - R. =
R R S 2

Dove c ¢ la velocita della luce (c = 299792458 m/s).
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Eclissi

Eclissi di Luna

Una eclisse di Luna si verifica quando la Terra si interpone tra il nostro
satellite ed il Sole, cio¢ quando la Luna entra nel cono d’ombra della Terra
che ¢ rivolto dalla parte opposta al Sole e pertanto 1’eclisse pud avvenire solo
guando la Luna & in opposizione, cioé quando é piena. Poiché la Luna si sposta
da ovest verso est
essa entra nel cono
- Lun d’ombra della Terra
A e oscurandosi  dalla
N parte lunare sinistra.
i Se I’orbita della
Luna attorno alla
= Terra giacesse sullo
stesso piano
dell’orbita della
Terra attorno al Sole ad ogni plenilunio avremmo una eclisse totale di Luna.
Queste due orbite sono inclinate di 5° 9 e si incontrano i due punti che
definiscono i nodi. Perché si abbia una eclisse, Sole e Luna non solo devono
essere all’opposizione ma devono essere vicinissimi ai nodi. In media la
distanza angolare del Sole dal nodo deve essere minore di 9°.9 per un’eclisse

parziale e non piu di 4°.6 per un’eclisse totale.

~
LINEA DEI
NODI

CALCOLO della LUNGHEZZA del CONO D’OMBRA
DELLA TERRA

orbita lunare

A
j B

Terra

Luna

Sole

I triangoli VAS e VBT sono simili (vedi figura)
VS: VT = AS: BT


https://www.google.com/url?sa=i&url=https://www.tes.com/lessons/dmdX7N2sto28RQ/moti-terra-video-e-la-luna&psig=AOvVaw1XeYDMy6nsTE-nyeKbzfUF&ust=1581007163795000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKjBmersuucCFQAAAAAdAAAAABAD

Ma:

VS=VT+ TS

Sostituendo si trova che:
VT = TS - BT
~ AS — BT

Siccome sappiamo che il raggio del Sole e circa 109.25 raggi terrestri
abbiamo:

— ST - BT
"~ 109.25BT — BT
— ST
© 10925 -1

La lunghezza del cono d’ombra si puo calcolare dividendo la distanza media
Terra-Sole per 109.25

Si puo calcolare anche il semidiametro apparente visto dalla Terra dell’ombra
che la Terra proietta sul piano dove si trova la Luna.

]

Sole

Poiché il raggio angolare della Luna ¢ di 15°.5, perché una eclisse di Luna
possa avere luogo ¢ necessario che la distanza tra i centri dell’ombra terrestre
e della Luna sia inferiore a:

41’+ 155 = 56’.5



Con questo dato si puo calcolare quanto & spostato il centro dell’orbita
terrestre dal nodo lunare.

Dalla proporzione:
BT:RH =VT:HV

H_VH-BT
VT

Dato che:
VH=VT —-TH

_ BT (VT —TH) _
H—T—
BT TH
=ﬁ(1‘ﬁ)

Dalla formula precedente:

_ ST
"~ 108.25

Sostituendo:

_ BT -108.25

RH
ST

(1-TH) =

R
= ;L“ 108.25 (1 — Dyy)

TS

Si trova che questo valore € di 10°.6. Quindi un’eclisse lunare si pud verificare
(anche di breve durata) solo nel caso in cui I’orbita terrestre ¢ spostata meno
di 10°.6 dal nodo lunare (ad est 0 ad ovest). La Terra si muove lungo I’eclittica
di circa 59’ al giorno. Per percorrere questa distanza impiega 10.8 giorni e la
distanza doppia in 21.6 giorni, poiché una rivoluzione sinodica si compie in
29.5 giorni. Una Luna piena puo verificarsi ad una distanza superiore ai 10°.6
ad ovest e la successiva Luna piena ad una distanza superiore ad est e quindi
nel corso di questa rivoluzione non si verificheranno eclissi. Si pu0 verificare
che in un anno non ci siano eclissi, mentre al massimo in un anno se ne
potrebbero verificare tre: la prima cadrebbe poco dopo il primo gennaio, la
seconda sei mesi dopo (in prossimita di giugno) e la terza a fine dicembre
(dodici mesi sinodici dopo la prima, 354 giorni).



Eclissi di Sole

Un'eclissi di Sole si verifica quando la Luna, attorno alla sua congiunzione, si

trova allineata tra la Terra e il Sole, molto vicino ad uno dei nodi o

esattamente in esso. Benché di dimensioni estremamente diverse, i due corpi

celesti si trovano a distanze tali da mostrare lo stesso diametro apparente, il

che consente alla

Luna di coprire il

disco del Sole.

Perché ci sia una

eclisse di Sole e

Luna necessario che al

Sole Ter momento del

novilunio il Sole

sia distante dal

nodo inferiore al massimo 15°.5. Questo valore ¢ piu alto di quello calcolato

per P’eclisse di Luna, e quindi si capisce perché le eclissi di Sole sono piu

frequenti. Il cono d’ombra massimo della Luna ha un valore che non supera i

270 km sulla superficie della Terra, mentre la lunghezza del cono d’ombra ¢

circa 374.000 km per cui il vertice di questo cono non sempre raggiunge la

Terra: in questo caso si hanno eclissi anulari. In localita differenti della Terra,

I’eclisse di Sole si verifica in tempi diversi. Il moto della Luna attorno alla

Terra e la rotazione della Terra attorno al proprio asse fanno si che I’ombra

lunare si sposti da ovest verso est formando una striscia d’ombra lunga un

migliaio di km e larga da 200 a 270 km. Poiché la Luna si sposta da ovest
verso est I’eclisse inizia dal bordo ovest del Sole.




CONDIZIONE perché si possa verificare un’eclissi di
Sole

Perché si verifichi un’eclisse di Sole ¢ necessario che nel periodo della Luna
nuova questa si trovi in prossimita di uno dei nodi della sua orbita, cioé in
vicinanza dell’eclittica. Indichiamo con S, T, L, i centri del Sole, della Terra,
della Luna, che giacciono tutti su di un piano perpendicolare al piano
dell’eclittica. Il verificarsi dell’eclisse dipende dalla latitudine geocentrica
della Luna (nella figura I’angolo LTS (vertice in T) = f)

Dalla figura:
B = LTL+ L'TS + STS
Dalla figura si evince che:
LTL ¢ il raggio angolare della Luna= «;,
STS’ € il raggio angolare del Sole = ag
B=oa +LTS +as
L'TS =2
Consideriamo 1’angolo TL’0 esterno al triangolo TL'S" :
TLO = L'TS + TS'L’
TLO = L'TS + TS'O
L'TS = TL'O — TS0
TL'O =p, = 57" 2" (parallasse orizzontale della Luna)

TS'0= ps = 8.8 (parallasse orizzontale del Sole)



B=a +a + p,— s
B = 15.5 +16.3 +57.2 — 8.8
B = 88.46

Perché si verifichi una eclisse anche di breve durata & necessario che la
latitudine geocentrica della Luna sia inferiore a 88°.46.

¢"EEEE NN EE NN NN SN NS NN NS NN NN NN NN NN NN NN NN NS EEEEEEENEENEEENNEENENEENENEEEEEEEN,
*

La parallasse orizzontale equatoriale della Luna & 1’angolo sotto il quale,
dal centro della Luna, & visibile il raggio equatoriale della Terra. La:
parallasse orizzontale equatoriale del Sole ¢ I’angolo sotto il quale, dal:
centro del Sole, ¢ visibile il raggio equatoriale della Terra.

Y NN NN NN NN EEEEEEEEE NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEnmnmmmn®

oSEEEEEEEEEN,
Yann

La distanza angolare del
centro della Luna rispetto al
nodo (longitudine) si puo
calcolare con la:

tan 8

tani

SinAA =

AL =16°5

AL Il Sole, muovendosi alla

velocita di 59’ al giorno,

percorre 33° di eclittica in 34 giorni. Essendo il periodo sinodico di 29.5

giorni, € evidente che nel corso di questo periodo si ha una Luna nuova (o

anche due). Questo assicura che nel corso di un anno si verifichino, almeno,

due eclissi di Sole in vicinanza dei nodi. Se la prima si verifica ai primi di

gennaio, la seconda si ha alla Luna nuova successiva, cosi una eventuale terza

e quarta eclisse si verificherebbero poco meno di sei mesi dopo e la quinta
354 giorni dopo la prima.
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Osservatore topocentrico

. Parallasse lunare
Osservatore geocentrico

(| Luna lungo la sua orbita

q Posizione apparente della Luna
sulla sfera celeste

Linea di vista
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Ciclo di Saros

In base a quanto fin qui detto, il numero massimo di eclissi che si possono
verificare in un anno é 7:

e 2Luna+5Sole
e 3 Luna+4Sole

e viceversa. Questa combinazione ¢ piuttosto rara, I’evento piu frequente ¢ 2
Luna + 2 Sole. Il numero minimo & costituito da due eclissi (entrambe di Sole).

Fin dall’antichita era noto che le eclissi si succedevano pressoché nello stesso
ordine in un periodo di circa 18 anni e 11.3 giorni. La spiegazione € alquanto
semplice.

Le fasi lunari si succedono ogni 29.53 giorni (mese sinodico) mentre il ritorno
allo stesso nodo della

\_h\ Luna avviene ogni
(EEwNE e 27.21 giomi. | nodi

’ e hanno un moto di

. retrogradazione: in un

pn “. 7w N ) giorno percorrono un
TS, O ] angolo  pari a
\\\Eii-@r < d 3°10°°.64 e
t \7 - = completano il giro in
T 18 anni e 11.3 giorni.

11 Sole si sposta di moto diretto in media di 59°8°°.33 al giorno rispetto al
nodo. Il moto del Sole é dunque di 62’19’ e quindi I’intervallo di tempo fra
due passaggi consecutivi del centro del Sole per lo stesso nodo é di 346.62
giorni (anno draconico). Il Saros ¢ I’intervallo di tempo perché questi tre
periodi tornino nella stessa successione. La natura si diverte!!!!

Succede che:

e 223 lunazioni (223 mesi sinodici) corrispondono a giorni 6585.19
(223 * 29.53)

e 242 mesi draconici corrispondono a giorni 6585.02

e Quest’intervallo di tempo corrisponde a 18 anni e circa 11 giorni



Se dividiamo questi 6585.19 giorni per I’anno draconico otteniamo un valore
di circa 19.

Dunque, come mostrato, questi tre periodi ritornano nella stessa successione
dopo circa 6585 giorni, cioe un ciclo di Saros. Le condizioni in cui si
producono le eclissi non saranno mai le stesse poiché, essendo 223 mesi
sinodici piu corti di 0.04 mesi draconici, dopo 18 anni la Luna non si trovera
esattamente allo stesso posto rispetto al nodo. Il ciclo di Saros contiene 6585
giorni interi piu circa 1/3 di giorno: questo comporta che le zone di visibilita
delle eclissi sulla superficie terreste in 18 anni si spostano di circa 120° verso
Ovest.



Esopianeti

Un pianeta extrasolare o esopianeta e un pianeta non appartenente al sistema
solare, orbitante cioé attorno a una stella diversa dal Sole. La scoperta degli
esopianeti € resa possibile da metodi di osservazione indiretta e da
osservazioni al telescopio. | pianeti, in confronto alle stelle, emettono molta
meno luce nell’universo: per tale motivo, I’individuazione diretta dei pianeti
extrasolari risulta estremamente difficile (in condizioni normali di visibilita, i
pianeti hanno solitamente una luminosita pari a circa un milione di volte meno
di quella di una stella). In aggiunta a questa intrinseca difficolta di rilevazione,
la maggiore luminosita delle stelle, attorno alle quali orbitano i pianeti, causa
un bagliore che tende a coprire la luce debolmente riflessa dai corpi celesti
del rispettivo sistema. Al 2008, sono stati determinati 6 metodi di
osservazione indiretta dei pianeti extrasolari:

e Astrometria: consiste nella misurazione precisa della posizione di
una stella nel cielo e nell’osservare in che modo questa posizione
cambia nell’arco del tempo. Se la stella ha un pianeta, allora
I’influenza gravitazionale del pianeta stesso causera alla stella un
leggero movimento circolare o un’orbita ellittica attorno a un comune
centro di massa. Questo movimento € rivelato attraverso misure di
effetto Doppler.

e Velocita radiali: questo metodo & conosciuto anche col nome di
metodo Doppler. Le variazioni nelle velocita con cui la stella si
allontana dalla Terra possono far dedurre la presenza di un pianeta, a
causa di “sbilanciamenti” delle linee spettrali della stella.

e Variazioni degli intervalli di emissioni di una Pulsar: una pulsar
(il residuo densissimo di una stella che & esplosa in supernova),
ruotando, emette onde radio a intervalli estremamente regolari.
Leggere anomalie negli intervalli delle emissioni possono essere
usate per tracciare cambiamenti nel moto della pulsar, causati dalla
presenza di pianeti

e Metodo del transito: se un pianeta transita di fronte alla propria
stella, allora & osservabile una diminuzione della luminosita della
stella eclissata. L’ammontare della variazione dipende dalla
dimensione del pianeta e della stella stessa. | pianeti extrasolari si
distinguono dalle stelle variabili a eclisse dal fatto che nella curva di
luce dei primi ¢’¢ un’unica variazione, nelle seconde ve ne sono due.



e Variazione del tempo di transito: in sistemi dove e gia stato
scoperto un pianeta in transito, & possibile trovarne altri osservando
eventuali variazioni del periodo orbitale del pianeta gia noto a causa
dell’attrazione gravitazionale di un altro pianeta non transitante.

e Microlente gravitazionale: I’effetto della lente gravitazionale
avviene quando i campi gravitazionali di due corpi celesti
“cooperano” per focalizzare la luce di una stella lontana.

Metodo dei transiti

7 T Stella

C: Pianeta.__L : ] D

‘ B Curva di luce

Nel momento in cui si verifica un transito si ha la seguente situazione:

Stella




Un vantaggio del metodo dei transiti & che le dimensioni del pianeta possono
essere determinate dalla curva di luce della stella. Supponendo trascurabile la
brillanza superficiale del pianeta (molto minore di quella della stella), &
possibile mettere in relazione il rapporto dei flussi con quello delle aree

irradianti:
Fo  As— Ay
F, A

Supponendo i corpi perfettamente sferici:

Fo 7R}

F, = mRZ
Semplificando:

()
F,~ \Rg

@)
F \Rs
AF (Rp>2
E \Rs

Analizzando le curve di luce (come
quella riportata a fianco) e possibile
notare che il “calo” di luminosita
dipende soltanto dalla variazione di
flusso che ci arriva sulla Terra (viene
solitamente chiamata “profondita del
transito”). Percio, la “variazione di
magnitudine” (se si scrive sotto forma
di rapporto con una magnitudine di
riferimento) segue lo stesso andamento
che, come visto, dipende dai raggi dei
due corpi.

Flusso luminoso

Tempo

TF

Tr

Figura 10: roppresentazione schematica di un transito plo
netario primario e dello risultante curva di luce. Sono indicati
lo profondita del transito, lo durato totale del tronsito ed il
tempo di eclisse totale, oltre oi contotti



Percio:

Da questa formula & dunque possibile ottenere una buona stima del raggio del
pianeta.
Infatti, sostituendo nella formula di Pogson:

F;
m; —mg; = —2.5log (F)
N

RZ
—Am = —2.5log (1 - R_§>

N

Rf, 1n(1—%> ) )
Sapendo che log (1 — R—Sz) = o) (cambiamento di base), allora:
RZ
In ( — —g)
Am = —2.5 R
In(10)
In(10) = ~2.30, percio:
RZ
In ( — —g)
am= 25— 5/
' 2.30

Assumendo adesso un raggio del pianeta molto pit piccolo di quello della
stella e “semplificando” tra loro il 2.5 con il 2.3 (ricordiamoci che si tratta di
un’approssimazione!!), otteniamo:

R?

Am = —-



STRUMENTI OTTICI

Angolo solido

Si  definisce angolo solido la
porzione di sfera intercettata dalle
semirette che lo individuano. Esso si
misura con la seguente relazione (vd.
figura a lato per la notazione):

A

Q:ﬁ

L’angolo solido  complessivo
comprendente tutta la superficie
sferica, sulla base della formula
precedente, & uguale a:

Ag  4mR?
‘Q'S = ﬁ = R2 = 47‘[

L'angolo solido totale di una sfera & pertanto pari a 4x. L'unita di misura ¢ sr
(steradiante) ed & un numero puro.

Per avere la misura in gradi quadrati si deve

180°)2 A

moltiplicare: 41 ( o dividere: —
ypm|

T

4m sr = 41253 gradi quadrati — 1 grado quadrato = 3.046 « 10~ sr



Campo dello strumento

Il campo di uno strumento € definito dall'angolo solido sotto il quale l'oculare
viene visto dal centro dell'obiettivo. Il campo corretto dalle aberrazioni ottiche

. L1
di norma é ED"

Apertura assoluta

L'apertura assoluta dipende dal diametro D dello strumento. La quantita di
luce raccolta & proporzionale all'area dell'obiettivo = D2

Apertura relativa
Si definisce apertura relativa il rapporto:

D  apertura assoluta (diametro)
f focale dell’obiettivo

Rapporto focale

L'inverso dell’apertura relativa % definisce il rapporto focale.

L'energia raccolta dall'obiettivo é distribuita sull'area dell'immagine la cui
grandezza sul piano focale e data da:

d=fetana
Con a=diametro angolare dell’oggetto:

d = fa Se a ¢ espresso in radianti.



Potere risolutivo
Il potere risolutivo e la minima distanza angolare tra due sorgenti di luce che
possono essere viste separate (“risolte", in termine tecnico) secondo un
criterio detto di Rayleigh. Due sorgenti puntiformi (di uguale luminosita)
risultano risolte quando la loro distanza angolare 6 € uguale a:

122« 2 122 * lunghezza d’onda
D B diametro

O(rad) =

Si ottiene un risultato in radianti. Se vogliamo ottenere 6 in secondi d'arco,
invece:

. 2510%e 2
9()=T

Con A=lunghezza d'onda della luce. Per 1’occhio umano, si pud assumere A
pari a 5500A (regione di massima sensibilita dell'occhio)®. Il potere risolutivo
dell'occhio, assumendo la pupilla con un diametro di 3 mm, € uguale a:

_ 1.221 _ 5500107 °m

e 22e 2 994410 *rad = 46"
D 3+10-3m ra

Il fattore di conversione da radianti a secondi ¢ il NUMERO MAGICO:

lrad = 206265”

Nella determinazione del potere risolutivo interviene [1’apertura dello
strumento e non 1’ingrandimento.

Ingrandimento

L'ingrandimento dello strumento é dato dal rapporto tra la focale dell'obiettivo
f e lafocale dell'oculare f":

ng’

% Questo potere risolutivo & quello teorico della lente o specchio obiettivo: tuttavia,
nella pratica, la risoluzione & peggiorata dalle turbolenze atmosferiche e dipende dal
seeing.



Aberrazione della luce

Quando i raggi di una stella arrivano sulla Terra, la loro
direzione di provenienza appare leggermente deviata a causa
c della velocita orbitale del pianeta v. | vettori delle velocita
(della luce e del pianeta) si combinano per dare un vettore
risultante di poco inclinato dalla direzione di provenienza dei

raggi.

%
a = arctan—
c

Rifrazione

Il fenomeno della rifrazione ha origine

dal cambiamento di velocita delle onde
M luminose quando passano da un mezzo

trasparente  all’altro.  Esiste una
h proporzione tra le due diverse velocita e
N, Raggio rifratto 1 SeNi degli _angol_i Oincidenza ©
Orifrazione Che i raggi formano con la
linea normale alla superficie nel punto
colpito dal raggio. Se consideriamo gli indici di rifrazione n,; e n, dei
materiali, la proporzione € inversa.

Raggio incidente

Slneincidenza _ 2 _ ﬁ

Slngrifrazione ng U3



Rifrazione atmosferica

All’entrata nell’atmosfera terrestre, i raggi

luminosi provenienti da un corpo celeste che | Altezza Rifrazione
si trova a distanza zenitale z vengono rifratti 0° 35
(deviati verso il basso) di unangolo r. Quindi 5° 10°

i corpi celesti si osservano in una posizione 10° 5’
leggermente piu alta del reale. In particolare, 20° 2.5
possiamo vedere oggetti che si trovano 45° 1’
anche sotto 1’orizzonte geometrico del luogo 60° 0.5

(es. 1l sole al tramonto). Per distanze zenitali 90° 0’

inferiori a 70°, il valore della rifrazione é
direttamente proporzionale alla tangente della distanza zenitale stessa
attraverso la seguente relazione:

r" = 58.2" tan (2)

Oltre questo valore, fino all’orizzonte, la rifrazione aumenta fino a
raggiungere il valore massimo di 35’

Formula di Bennett e Saemundsson

Bennett ha sviluppato una formula empirica semplice per calcolare la
rifrazione partendo dall’altezza apparente. Se h, ¢ 1’altezza apparente in gradi,
la rifrazione R in minuti d’arco ¢ data da:

7.31 )

R= e
cotg (h“ Tt 44

La formula ha una precisione di 0.07°. Saemundsson ha sviluppato una
formula per determinare la rifrazione partendo dall’altezza vera (mantenendo
le stesse unita di misura della formula di Bennett):

R = 1.02cot <h+ 10.3 )
e T

La formula corrisponde a quella di Bennett a meno di 0.1°.



Depressione dell’orizzonte

Oltre alla rifrazione, se 1’osservatore € posto ad un’altezza h dalla superficie
avra un altro fattore che produrra un’ulteriore “abbassamento dell’orizzonte”.

0 Orizzonte

apparente

= arceos (37)
L = arccos R+h

La “depressione dell’orizzonte” ¢ quindi un effetto dovuto sia all’atmosfera
terrestre che alla quota alla quale si trova 1’osservatore:

D=d+i

All’orizzonte, dove la rifrazione vale circa 35°:

D=35+i



Riassumendo...

CENNI TEORICI SUI TELESCORPI

Il telescopio & uno strumento che raccoglie la luce o altre radiazioni
elettromagnetiche provenienti da un oggetto lontano, la concentra in un punto
(detto fuoco) e ne produce un'immagine ingrandita. Possiamo paragonare un
telescopio a un “grande occhio” che sopperisce al fatto che la nostra pupilla,
di dimensioni ridotte, riesce a raccogliere un quantitativo insufficiente di luce
emessa da un oggetto lontano. Un telescopio € caratterizzato dalle seguenti
componenti e grandezze:

e OBIETTIVO: ¢ la parte del telescopio rivolta verso 1’oggetto da
osservare. Il suo diametro D prende il nome di APERTURA.
Telescopi con una grande apertura sono capaci di raccogliere piu luce
e di fornire un’immagine a piu alta risoluzione. L’obiettivo fa
convergere i raggi luminosi in un punto, il fuoco, la cui distanza
dall’obiettivo ¢ chiamata LUNGHEZZA FOCALE.;

e OCULARE: la parte del telescopio (nel caso di telescopi ottici) che
raccoglie la luce proveniente dall’obiettivo e che la trasmette poi
all’occhio. Anche per [D'oculare €& possibile definire una
LUNGHEZZA FOCALE.

Ingrandimento
L’ingrandimento di un telescopio ¢ dato dal rapporto fra la lunghezza focale
dell’obiettivo e la lunghezza focale dell’oculare:

i = fon/foc

Rapporto focale
Rapporto esistente tra la lunghezza focale dell’obiettivo e 1’apertura stessa del
telescopio:

fob
F==2
D

Negli strumenti é specificato da una F seguita da un numero (es.: F4, F4.5,
F6...).



Campo visivo
Esso ¢ dato dal rapporto fra il campo visivo apparente dell’oculare
(I’ampiezza angolare dell’immagine fornita dall’oculare soltanto) e il numero
di ingrandimenti:
FoVpc

l

FoV =

Pupilla d’uscita

Essa ¢ il diametro del fascio luminoso che esce dall’oculare:

D

P=7

Potere risolutivo
Esso ¢ I’angolo minimo che deve separare due oggetti affinché lo strumento
li possa distinguere: € dato dal criterio di Rayleigh:

1,224
9(rad) = D

69,91

D

o

Alunghezza d'onda della luce osservata

Magnitudine limite
E la magnitudine visuale massima che pud essere osservata con uno strumento
di apertura D (in cm):
my, = 6,8 + 5logD



Ingrandimento minimo utile
¢ l’ingrandimento che fornisce una pupilla d’uscita pari al diametro della
pupilla umana (6-7 mm):
imin = D(mm)/7

Formula di Dawes
Ci consente di trovare I’apertura minima di un telescopio atto a distinguere un

oggetto che si vede sotto un angolo a:

120
D(mm) = a—

Dimensioni dell’immagine sul piano focale
L’immagine che si forma sul piano focale di un telescopio con lunghezza

focale dell’obiettivo f relativa a un oggetto di dimensione angolare a €:
l=2ftan (a/2)



ASTROFISICA

Tutte le informazioni che riceviamo dalle stelle ci provengono dalla “luce”
che emettono’. E solo attraverso 1’analisi e la “decodificazione” dei messaggi
contenuti in questa radiazione elettromagnetica che é la luce che noi
possiamo ottenere informazioni sulle proprieta fisiche e chimiche delle stelle
e delle galassie.

Radiazione elettromagnetica

Una radiazione elettromagnetica ¢, dal punto di vista dell’elettromagnetismo
classico, un fenomeno ondulatorio dovuto alla contemporanea propagazione
di perturbazioni periodiche di un campo elettrico e di un campo magnetico,
oscillanti su piani tra di loro ortogonali. Le stelle emettono tipicamente
radiazione di “corpo nero” e come tale irradiano energia in tutte le lunghezze
d’onda secondo una distribuzione che viene chiamata spettro della radiazione
elettromagnetica.

Luce
Visibile

10km 1fm

700nm 630nm 530 nm 570nm 500 nm 450 nm 400 nm



I parametri che permettono di distinguere tra loro le varie radiazioni
elettromagnetiche sono:

®

In realta, un altro “canale” di trasmissione delle informazioni per la
comprensione dei fenomeni celesti si e aperto grazie ai risultati
positivi ottenuti dagli interferometri per onde gravitazionali LIGO e
VIRGO; in particolare, gli interferometri menzionati, il 17 agosto
2017, hanno rilevato un segnale di onda gravitazionale (rilevazione
annunciata poi ufficialmente il 16 ottobre dello stesso anno), mentre
altri telescopi in orbita e a terra sono riusciti a individuare per la prima
volta la sua controparte elettromagnetica; 1’evento che ha generato il
segnale ¢ stato la collisione di due stelle di neutroni (che ha portato a
un’esplosione nota col termine di kilonova) nella galassia NGC 4993:
esso ha segnato la nascita della cosiddetta “astronomia multi-
messaggero, per il fatto che é stato possibile confrontare due
“linguaggi” diversi, permettendo cosi di ampliare le frontiere della
conoscenza di questi fenomeni “estremi”.

Parametri di un’onda

Come tutti i fenomeni ondulatori la radiazione elettromagnetica &
caratterizzata da questi parametri:

Rceisaiag la distanza tra due creste o tra
amplezza due \_/entr_l. Si mlsura_l |q metri e/o
(potenza) con i suoi sottomultipli.

tempo ’

,  \mghmadenda + Lunghezza d’onda A:

+ Periodo T:

I’intervallo di tempo, misurato
in secondi, in cui avviene

PO un’oscillazione completa,

una osclllazione . .
(In frequenza & il numero di ovvero lintervallo di tempO
oscillazioni al secondo) . . ' .

impiegato dall'onda per ritornare



nella medesima posizione (per esempio, il tempo intercorso tra due
creste o tra due ventri successivi.

+ Freguenza v: € il numero di creste che si susseguono nello stesso

punto nell’unita di tempo; ¢ I’inverso del periodo:

1
VST

Si misura in Hertz (Hz).
1Hz =1s"! =1 oscillazione al secondo

+ Ampiezza A: rappresenta la variazione massima dell’onda.
L’ampiezza di un’onda periodica ¢ I’altezza di una sua cresta
rispetto alla posizione di riposo.

+ Intensita di un’onda: ¢ proporzionale al quadrato dell’ampiezza.

+ Potenza: ogni onda porta con sé un’energia e quindi una potenza.
Tale potenza decresce con il quadrato della distanza dalla sorgente.

La lunghezza d’onda A e la frequenza v di una radiazione elettromagnetica
sono grandezze legate tra loro dalla relazione:

Av=c

(c —la velocita della luce- nel vuoto ha un valore di 299 792 458 m/s.) Questa
formula ci dice che le due grandezze sono inversamente proporzionali.

La radiazione elettromagnetica pud essere interpretata come un insieme di
“pacchetti” di energia a cui si da il nome di fotoni: grazie a questi “pacchetti
energetici” la luce puo interagire con la materia a livello microscopico: per
esempio puo eccitare un elettrone in un atomo cedendo a esso la sua energia.
Continuando il paragone, possiamo immaginare che piu la radiazione &
intensa, piu i pacchetti sono numerosi; piu la radiazione cresce di frequenza,
piu essi sono “capienti”. Quest’ultima caratteristica & descritta dalla Legge di
Planck, che lega I’energia del fotone alla sua frequenza:

E=h-v

(dove h ¢ la costante di Planck)



Equivalenza massa-energia

Tra I’energia e la massa esiste una fondamentale relazione, scoperta dal fisico
Albert Einstein, espressa dall’equazione

E = mc?

dove c & la velocita della luce (pari a 3 - 10® m/s). L'equazione di Einstein
implica che energia e massa sono equivalenti: la massa puo essere trasformata
in energia e l'energia pud essere trasformata in massa. Cid comporta il
principio di conservazione della massa-energia: non vi € conservazione
della massa o dell'energia considerate separatamente ma vi &€ conservazione
dell'insieme delle due: a una diminuzione della massa pari a Am deve
corrispondere un aumento dell'energia pari a Am - ¢2. Poiché il prodotto m -
¢ & un numero molto grande, la trasformazione di una massa anche molto
piccola di materia determina la produzione di una quantita enorme di energia,
come avviene, per esempio, nelle reazioni di fissione e di fusione nucleari
(queste ultime avvengono nel nucleo delle stelle: si veda, per una maggiore
comprensione, il problema “Carburante stellare” della sezione Miscellanea).



Grandezze fotometriche

Simbolo e unita di
misura

Grandezze fotometriche

& lumen (Im)

Flusso luarinoso: quantita di luce emessa da unasorgente
luminos a nelfunita ditempo

Intens»fta Jumrfo:a.. quartita di f.ltfss.o Iummoso.emss.o in un.a I=2 candela (cd)
determinata direzione e nelfunita di angolo solido, misurato in @
steradianti (sr), che la contiene ed =Imisr

L3
o . 5 E=— lux(lx)
Mearinamento: quantita difluss o luminoso per unita di superficie bt
X Ix=Mmim
Ay S 4 3
P E R
Lume inanza: intersitd luminesa emessa in una determinata —— I
direzione da una sorgente luminosa o, per riflessione, da una Nt L= candelaim
superficie illuminata riferita allunita di superficie normale atale
direzione {edim)

Immagine dal web (fonte: VOLTIMUM)

Flusso luminoso

Quantita di energia luminosa emessa da una determinata sorgente nell'unita
di tempo. Lo indichiamo con la lettera ®. L'unita di misura nel Sl e
il lumen (Im); 1 watt = 683 lumen.



IHluminamento
Rapporto tra il flusso luminoso ricevuto da una superficie e l'area della
superficie stessa (E= £ )
L'unita di misura nel SI & il lux (Ix), ovvero il lumen al metro quadrato
(Im/m?).

Nota:

Dalla definizione di illuminamento si ricavano due importanti corollari di
natura geometrica che risultano molto utili per comprendere la distribuzione
della luce nello spazio:

1) Per una sorgente puntiforme la diminuzione del livello di
illuminamento su di una superficie varia in relazione al quadrato della
distanza dalla fonte: raddoppiando la distanza dalla fonte il livello di
illuminamento sulla superficie diviene quindi %;

2) 1l livello d’illuminamento su di una superficie ¢ massimo quando i
raggi luminosi giungono perpendicolari ad essa e diminuisce
proporzionalmente al loro angolo d’incidenza secondo la relazione:
E = E, xcos (i) , dove E,el’ illuminamento normale e i &
I’angolo d’incidenza tra raggi luminosi e la normale alla superficie.

Intensita luminosa

Flusso luminoso emesso all'interno dell'angolo solido unitario in una

direzione data.
1=g=2
w

ed e una grandezza vettoriale. L'unita di misura nel Sl e la candela (cd).

Luminanza

La luminanza ¢ il rapporto tra I’intensita luminosa di una sorgente nella
direzione di un osservatore e la superficie emittente apparente cosi come viene
vista dall’osservatore stesso
I
"~ S*cosa
a el'angolo compreso tra la direzione di osservazione e 1’asse
perpendicolare alla superficie emittente. La luminanza si esprime in cd/m?.



Parametri fisici delle stelle

Le grandezze fondamentali che permettono di caratterizzare le stelle sono:

la distanza (d)

lo spettro della radiazione e.m. emessa
la luminosita totale o bolometrica (L)
la temperatura superficiale (T)

il raggio (R)

la massa (M)

R R

Le stelle possono essere approssimate a corpi neri, in quanto le uniche onde
elettromagnetiche che non vengono assorbite dalla loro superficie sono quelle
aventi una lunghezza d'onda di dimensione pari o0 maggiore del diametro della
stella stessa. Per studiare le proprieta dell’emissione continua delle stelle e
utile introdurre il concetto di corpo nero.

CORPO NERO

Il corpo nero & un corpo che assorbe tutta la radiazione che gli cade sopra.
Appare perfettamente nero perché assorbe il 100% della radiazione che
incide su di esso e non ne riflette nessuna. Il corpo nero € un oggetto teorico:
nessun materiale assorbe tutta la radiazione incidente.

Il corpo nero ha uno spettro di emissione caratteristico che dipende solo da un
parametro: la temperatura.

Lo studio della radiazione emessa dal corpo nero ha portato alla formulazione
delle seguenti leggi:



Legge dello spostamento di Wien

La frequenza massima, Vv, di uno
spettro di corpo nero a temperatura T

cresce linearmente con T. |

Vmax < T, il che comporta una . &0
proporzionalita inversa  fra la 3

temperatura assoluta e la lunghezza -
d’onda 5

Amax T =D 20

b =29103m-K il

0 500 1000 1500 2000
A [m]

Per cui si ha: Apq T= 2,9.1073 mK

Legge di Stefan-Boltzmann
L'energia erogata per unita di superficie e per unita di tempo & proporzionale
alla quarta potenza della temperatura T:

I =o0T*

Applicazioni in astrofisica

Per una stella, che approssimiamo ad una
sfera di raggio R e superficie S=
4mR? la legge di Stefan-Boltzmann diventa:

L= 4nR? o T*

Poiché le stelle non sono dei corpi neri
perfetti, la temperatura é la temperatura efficace, quella che la superficie della
stella avrebbe se si comportasse da corpo nero®°.

10 Lo spettro esistente in natura che si avvicina di piu a quello di un corpo nero &
quello della radiazione cosmica di fondo (CMB, ossia Cosmic Microwave Background)
a 2.725 K, ma anche lo spettro delle stelle approssima sufficientemente a quello di
un corpo nero.




Flusso e luminosita

Il flusso di energia e dato dal rapporto fra
I’energia emessa dalla stella nell’unita di
tempo e la superficie della sfera di raggio
pari alla distanza d dalla stella. Notiamo
dunque che il flusso misurato sulla
superficie  terrestre  dipende dalla
luminosita della stella e dalla sua distanza.

_ L
= 4md?




Logaritmi

Definizione
Il termine logaritmo & composto da due parole greche: logos = "ragione"
e arithmos = "numero". “Numero di ragioni”: questa definizione appare
naturale pensando alla ragione delle progressioni aritmetiche e geometriche
che sono alla base della costruzione di Nepero.

La storia di come nasce questo procedimento di calcolo & molto interessante:
qui ci piace evidenziare che la motivazione alla base della scoperta dei
logaritmi ed anche il
motivo  del  loro
successo fu la ricerca i
di efficienti strumenti .|
di calcolo in grado di
alleggerire il pesante
fardello di cui erano
gravati gli astronomi
del tempo i quali, per T T R P T
poter predire il corso dei pianeti, si dovevano confrontare con grandi difficolta
di calcolo. Basta pensare al calcolo dell’orbita del pianeta Marte del povero
Keplero. Quando Nepero pubblico il suo lavoro sui logaritmi gli astronomi
dissero che aveva regalato loro meta della vita! I logaritmi rendono infatti
possibile trasformare prodotti in somme, quozienti in differenze,
elevamenti a potenza in prodotti e calcoli di radici in quozienti: le
operazioni vengono molto semplificate.

Che cosa e un logaritmo?
Generalmente si risponde che & una operazione inversa.

Partiamo da una operazione conosciuta: 1’estrazione di radice quadrata di un
numero:

V25=5

La radice quadrata di 25 € quel numero che elevato a due restituisce 25, cioe
il numero 5: infatti 52 =25. Concludiamo dicendoche la radice &
P’operazione inversa dell’elevamento a potenza.



Il concetto di logaritmo € abbastanza simile a quello della radice quadrata solo
che non ci riporta al numero di partenza ma al suo esponente.

Introduciamo la scrittura:
logs 25 =2
Essa significa che:
52 =25

Definiamo logaritmo di un numero b (argomento del logaritmo) quel numero
a cui bisogna elevare la base per ottenere il numero b. In notazione
matematica:

log, b = x
a*=b

Anche il logaritmo ¢ I’operazione inversa dell’elevamento a potenza!

log, 8 =X

La domanda é “qual ¢ ’esponente che devo dare alla base (2) per ottenere
il numero (8)?”

Scriviamo, applicando la definizione:

2% =8
E siccome:
8 =23
Allora, sostituendo:
2% = 73
E percio*:
x=3

(*se le basi sono uguali, I’uguaglianza sara verificata se saranno uguali
anche gli esponenti)



E abbastanza evidente che i logaritmi e le potenze costituiscono due modalita
di scrittura diversa, ma rappresentano la stessa cosa.

Osservazione importante: la base dei logaritmi e ’argomento devono essere
numeri reali positivi; in piu, la base deve anche essere diversa da 1:

b>0
0<axl1
a>1

Quindi, per esempio, non esistono log,(—5), log; 12, ecc.

Proprieta dei logaritmi
Il logaritmo del prodotto di 2 o piu numeri positivi corrisponde alla
somma dei logaritmi dei singoli fattori:

I{Jal—'uil l‘r" ' r':I = I{Jal—'uilf" + I{Ja"—'uil C

(Nota: a*-a¥ = a**?)

Il logaritmo del quoziente di 2 numeri positivi & eguale alla differenza tra
il logaritmo del dividendo e il logaritmo del divisore:

b
I{Ja"—'uil - = ]'{JJ"—'HLI'I — I{Ja"—'uil L
o
(Nota: a*:a¥ = a*™7)


http://3.bp.blogspot.com/-UxzhX3qqgTI/UJlOcjc1UrI/AAAAAAAADHI/M-n6FfhCEYY/s1600/CodeCogsEqn(535).gif

Il logaritmo della potenza a esponente reale di un numero positivo e
uguale al prodotto dell'esponente per il logaritmo del numero:

1{)5-_"‘” Jr.'“ = i |i||'.|_v|']|l|.r Jr.'
Una estensione di questa ultima proprieta é
log, V/b™ =log, bn

che possiamo scrivere come Zlog,, b
1 108a

A volte per calcolare un logaritmo pud risultare utile effettuare un
cambiamento di base.

Il loga b, la cui base & a, puod essere scritto utilizzando un’altra base, per
esempio il numero c:

Ricorda inoltre che:

log,1 =0 (infattia®=1) e log,a=1 (infattia® = a)

Se la base di un logaritmo & il Numero di Nepero (chiamato meno
frequentemente anche Numero di  Eulero e indicato con
e = 2,718281828459...) allora il logaritmo prende il nome di logaritmo
naturale e si indica con In.

Quindi se vediamo I[n5, niente paura! Si tratta di log, 5
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Se la base di un logaritmo € 10, il logaritmo prende il nome di logaritmo
decimale e la base generalmente si omette; questo tipo di logaritmo & il piu
usato in astrofisica.

Quindi se vediamo log7, cio vuol dire log;, 7

I logaritmi sono utilizzati nella vita di tutti i giorni: ad esempio il gommista
guando misura la pressione di una gomma utilizza uno strumento con una
scala non lineare ma logaritmica; le scale sulla macchina fotografica sono
logaritmiche; i nostri organi di senso sono "logaritmici*. Questo ci permette
di percepire un intervallo di informazioni molto piu esteso di quello che
avremmo se i nostri sensi fossero lineari. Pogson, quando capi che il nostro
occhio percepisce una differenza di una magnitudine (p> per le magnitudini
consulta le pagine successive del Bignamino) tra due stelle quando il rapporto
tra le loro luminosita & uguale a 2,5 e che questo conserva la classificazione
di Ipparco, formuld la sua formula in funzione del logaritmo del rapporto delle
loro luminosita.

Niente paura!

Oggi avete le calcolatrici, e non
si devono utilizzare le
famigerate tavole logaritmiche
che si utilizzavano un tempo per
calcolare un logaritmo.

Bisogna solo stare attenti ad
utilizzare
CORRETTAMENTE la
calcolatrice!




Magnitudine delle stelle

Quando si guarda il cielo si vede subito che le stelle ci appaiono piu 0 meno
brillanti (o luminose), ovvero sembrano avere diversa intensita luminosa. Gli
astronomi descrivono la luminosita stellare osservata in termini di
magnitudine apparente m.

Nel 11 secolo a.C. Ipparco di Nicea, utilizzando
I’unico strumento a sua disposizione (1’occhio
umano), introdusse una classificazione delle stelle
in 6 classi di luminosita che chiamo
MAGNITUDINI.

La scala scelta da Ipparco prevedeva che le stelle
piu luminose venissero collocate nella prima
classe, quelle un po’ meno luminose nella seconda
e, giu giu, fino a quelle appena visibili a occhio
nudo, collocate nella sesta classe.

Con l’osservazione del cielo attraverso gli
strumenti ci si pose il problema di estendere la
scala delle grandezze anche alle stelle non visibili ad occhio nudo.

Un grossissimo contributo venne dallo studio della fisiologia dell’occhio,
strumento sul quale erano state fatte le prime classificazioni. La risposta
dell’occhio umano agli stimoli luminosi non ¢ di tipo lineare, la reazione alla
luce de reagisce alla sensazione della luce in modo logaritmico.

Pogson € riuscito a dare una formulazione matematica alla scala delle
magnitudini individuata da Ipparco. Pogson stabili che il rapporto fra le
intensita luminose di una stella di prima e di sesta grandezza era pari a
100.



Magnitudine apparente

Se I; e I’intensita luminosa di una stella di magnitudine m; ed I, I’intensita
di una stella di magnitudine m, se m; - m, = -5 ed il rapporto i—lz 100
2

Iy
my — my = Klogz

—5=K=x2

K= -25
I
my; — my, = —2.5log—
I

L’equazione di Pogson spiega il perché la magnitudine decresce quando
I’intensita luminosa cresce.

Quando si parla di intensita luminosa di una stella in realta ci si riferisce al
flusso di energia, ¢ , che abbiamo visto essere legato alla luminosita dalla:

_ L
¢ = 4md?
Se nella formula di Pogson m; — m, = —2.5*log;—1 sostituiamo alle
2

intensita luminose il flusso si ottiene (a parita di luminosita):

d,
m; — m, = —5logd—
1

La magnitudine apparente di una stella dipende dalla distanza.

UTILE PER GLI ESERCIZI:
Con gli strumenti, un fotometro per esempio, calcoliamo il rapporto I, /I, e
cosi possiamo conoscere la differenza di magnitudine m; —m,. Se la
differenza di magnitudine é di 1 unita:

I
—1=-25log <1—>
2

I I I
log (—1) =04 > =10 - 1=2512=7%700
I I I



E se la stella apparentemente piu debole fosse in realta
piu brillante ma piu lontana?

Magnitudine assoluta

Per rispondere a questa domanda é stata introdotta la scala delle magnitudini
assolute indipendente dalla distanza. Per costruire questa scala é stata presa
una distanza di riferimento pari a 10 pc. Quale sara la magnitudine di una
stella di cui si conosce la distanza e la magnitudine apparente se viene posta
alla distanza di 10 pc?

M- m= =51
m °9 10 pc

M —m = 5->5logd
Questa ultima viene anche indicata come formula del modulo di distanza.
Il modulo di distanza (u) € uguale alla differenza tra la magnitudine apparente
e quella assoluta di un astro.
u=m-M
La scala delle magnitudini assolute consente di poter confrontare la luminosita

intrinseca delle stelle.

M =magnitudine assoluta (stella alla distanza di 10 pc)
m =magnitudine apparente
d = distanza della stella in pc



-268 125 44 15 0 +6 +25 +32

Magnitudine apparente di alcuni oggetti celesti: da sinistra verso destra,
Sole, Luna piena, Venere, Sirio, Vega, magnitudine limite dell’occhio,
magnitudine limite di un telescopio, magnitudine limite del telescopio
spaziale Hubble.

Magnitudine di un sistema multiplo

Se vogliamo calcolare la magnitudine complessiva di due o piu sorgenti
luminose, é errato ritenere di poter sommare le magnitudini! Infatti possiamo
sommare i flussi, ma le magnitudini dipendono da essi in relazione
logaritmica! La relazione che ci permette di determinare la cosiddetta
magnitudine integrata (ossia la magnitudine complessiva, “totale”) di n
oggetti di magnitudine my, my....,m, € la seguente:

My = —2.5log (10—0.4m1 +10794m2 4 ... 4 10—0.4mn)



Magnitudine integrata e superficiale

Se invece vogliamo calcolare la magnitudine superficiale di un oggetto
esteso di superficie angolare S (misurata in arcmin? o arcsec?), ossia la
magnitudine di un quadratino di superficie di lato uguale a 1 arcsec? o 1
arcmin?, allora applichiamo la seguente formula:

Mgyp = Mine + 2.510g(S)

Se S & misurata in arcmin?, la mgy, & espressa in mag/arcmin?, Se S & misurata
in arcsec?, mgp & espressa in mag/arcsec?.

Relazione Periodo — Luminosita

Le stelle variabili cefeidi sono una categoria particolare di stelle pulsanti
molto luminose la cui magnitudine assoluta media € legata al periodo di
variabilita. 1l loro studio ha permesso di determinare in modo pressoché
preciso le distanze cosmiche.

Per una cefeide di periodo P vale la seguente relazione:

M = -2.85logP —1.37
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Bignamino di Astronomia

Estinzione atmosferica

Estinzione ¢ il termine usato in astronomia per descrivere 1’assorbimento e
la diffusione della radiazione elettromagnetica emessa da un oggetto a
causa della materia presente tra 1’oggetto e l’osservatore. L’atmosfera
terrestre perturba la luce proveniente dalle stelle provocando oltre al
fenomeno della rifrazione e del seeing! anche I’assorbimento della
radiazione. Un osservatore riceve un flusso minore di quello che avrebbe
osservato fuori dall’atmosfera. Questa attenuazione prende il nome di
estinzione della luce della stella, dal punto di vista osservativo si percepisce
una magnitudine apparente inferiore da quella osservata fuori dall’atmosfera.
La quantita di estinzione dipende dalla quantita di aria (airmass) che la luce
deve attraversare. La quantita d’aria sopra 1’osservatore (allo Zenit) definisce
1 airmass.

Lo strato di atmosfera che la luce attraversa dipende dal suo angolo zenitale.
Se si sta osservando una
stella allo Zenit, la sua
luce sta attraversando 1
airmass. Poiché lo
spessore  degli  strati
atmosferici € piccolissimo
rispetto al raggio terrestre,
I’atmosfera che circonda
un osservatore Si puo
considerare  piana per
angoli zenitali inferiori a
70°.

11 |n astronomia, con il termine seeing ci si riferisce a particolari fenomeni
atmosferici che peggiorano I'immagine di oggetti astronomici. Le condizioni di
seeing per una determinata notte e una determinata localita descrivono quanto
I’'atmosfera terrestre perturba (per turbolenza e temperatura) I'immagine dei corpi
celesti osservati. Il seeing ha molti fattori che lo influenzano quali: la turbolenza
atmosferica, 'umidita, le condizioni dello strumento utilizzato, I'inquinamento
luminoso e la trasparenza del cielo.




Ed allora si nota che la massa d’aria (A) dipende da:

1
"~ cos (2)

Lo strato che la luce deve percorrere € maggiore di 1 airmass. Indichiamo con
m, la magnitudine apparente osservata e con m, la magnitudine apparente
osservata fuori dall’atmosfera. Si dimostra che:

m, = my + kA

m, —mgy = kA

Am = kA

Am =k

cos(z)

Poiché I’angolo z ¢ legato all’altezza h della stella dalla relazione:
z=90°— h
Allora:

1

Am=k—————
m cos(90° — h)

11 coefficiente dipende dalle proprieta locali dell’atmosfera e dalla lunghezza
d’onda della luce, oltre che all’ora delle osservazioni. Le condizioni
dell’atmosfera possono cambiare da una notte all’altra, a volte anche nel corso
di una stessa notte. Per misure di precisione, il coefficiente k deve essere
determinato volta per volta.

Calcoli empirici, con ipotesi molto semplificative, mostrano che allo Zenit:
Am = 0.21
Mentre ad una distanza zenitale di 89°, appena 1° sopra 1’orizzonte:

Am = 5.49



Per distanze zenitali minori di 70° (z < 70°) e per osservazioni effettuate da
luoghi dove I’inquinamento luminoso ¢ assente e la qualita del cielo ¢
eccellente il coefficiente di estinzione ¢ k =0.21 e la variazione di
magnitudine si puo calcolare con la seguente formula:

Am =021 ———
m cos(90° — h)

Alla distanza zenitale di 90° (h = 0) I’applicazione di questa formula
porterebbe ad una estinzione infinita. L’assorbimento atmosferico comporta
Pimpossibilita di osservare gli astri che si trovano appena sopra
I’orizzonte, se si escludono quelli pit luminosi.

L’applicazione di formule complesse e metodi interpolativi di dati osservativi
porta alla seguente tabella dove sono tabulati i valori fino a z = 90°:

h z A m—mg
90° 0° 1.00 0.21
75° 15° 1.04 0.22
60° 30° 1.15 0.24
45° 45° 1.41 0.30
30° 60° 2.00 0.42
15° 75° 3.9 0.82
10° 80° 5.8 1.2

7° 83° 7.5 1.6

5° 85° 10 2

2° 88° 19 4

0° 90° 40 8
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COSMOLOGIA ELEMENTARE

Redshift

Su grandi scale, le galassie si stanno allontanando con velocita via via
maggiore all’aumentare della loro distanza. Lo stesso spazio-tempo si sta
espandendo e sta portando le galassie con sé. Com’é possibile mettere in
luce il fenomeno dell’allontanamento delle galassie?

Data una sorgente caratterizzata da un certo spettro a righe di emissione o di
assorbimento, se essa possiede una componente della velocita non nulla nella
direzione di osservazione (componente radiale), tale moto pud essere rivelato
dallo spostamento delle righe spettrali. In particolare:

1.

Se la sorgente si sta allontanando dall’osservatore, allora le
righe saranno spostate a lunghezze d’onda maggiori rispetto
alla loro posizione in laboratorio (laboratorio = sorgente in
quiete). Dal momento che nello spettro visibile le lunghezze
d’onda maggiori sono quelle corrispondenti al colore rosso, a
tale fenomeno si da il nome di spostamento verso il rosso (o
redshift).

Se la sorgente si sta avvicinando all’osservatore, allora le
righe saranno spostate a lunghezze d’onda minori rispetto alla
loro posizione in laboratorio. Dal momento che nello spettro
visibile le lunghezze d’onda minori sono quelle
corrispondenti al colore blu, a tale fenomeno si da il nome di
spostamento verso il blu (o blueshift).

Come quantificare le entita degli spostamenti delle righe spettrali?

Introduciamo la seguente relazione per il calcolo del redshift.

Aobs - Arest

Arest

Dove z ¢ il redshift, A, ¢ la lunghezza d’onda osservata della riga e ;.5 la
lunghezza d’onda della riga corrispondente a sorgente in quiete. Se z ¢
pOSitivo, Cioé Ayps > Arest, allorasiamo in presenza di uno spostamento verso



il rosso. Viceversa, se z € negativo, Cioe A,,s < Ay, allorasiamo in presenza
di uno spostamento verso il blu.

Redshift ottico e legge di Hubble-Lemaitre

La cosmologia moderna nasce con la legge di Hubble-Lemaitre:
v = Hd

Che lega in modo proporzionale la velocita radiali v di allontanamento delle
galassie alla loro distanzad (Hé la costante di Hubble, il cui valore

attualmente stimato € attorno a H = 2.176 10‘18Hz(67.155’1‘w";): le

galassie piu distanti si allontanano piu velocemente. Questa legge deriva
da osservazioni che mostrano che tutte le righe spettrali delle galassie sono
spostate verso il rosso (redshift) e che tale effetto & proporzionale alla
luminosita apparente delle galassie, legata alla loro distanza.

Maggiore ¢é la distanza della galassia, tanto maggiore sara il redshift:

Hd
z=—
c

Per z« 1 vale I’approssimazione del redshift come effetto Doppler (z= % ) e

quindi z ¢ direttamente proporzionale alla velocita di allontanamento delle
galassie.



Redshift cosmologico

Il redshift cosmologico é lo spostamento relativo in frequenza di un‘onda
elettromagnetica dovuto

S\ - all'espansione dell'universo.
‘] W Si spiega ipotizzando che le
Zoand lunghezze d'onda varino allo
stesso modo delle distanze

per effetto dell'espansione

e = dell'universo. La lunghezza
['\/VW\/’ d'onda e proporzionale al

fattore di scala dell'universo.

NOTA: Il redshift cosmologico non ¢ dovuto all’effetto Doppler, non ¢ dovuto
ai moti relativi delle galassie. Le cause e le grandezze fisiche coinvolte sono
completamente diverse.

Redshift relativistico

Quando z si avvicina al valore di 1, allora la formula da utilizzare diventa la
seguente (la quale tiene conto degli effetti relativistici):




Redshift gravitazionale

La relativita generale prevede che la luce che si muove attraverso campi
gravitazionali molto intensi sperimentera uno spostamento verso il rosso o
verso il blu.

Il redshift gravitazionale (chiamato anche spostamento di Einstein) é dovuto
dal fatto che un fotone, quando emerge da un campo gravitazione, perde
energia e quindi presenta uno spostamento verso il rosso che dipende
dall’intensita del campo gravitazionale misurata nel punto in cui si trova il
fotone:

GM
T rc?
Tale relazione vale se r > 1, , con:
2GM
e =
S C2

(raggio di Schwarzschild)

(M massa della stella, r raggio della stella)

La formula generale é:




Effetto Doppler

L’effetto Doppler ¢ un fenomeno fisico che consiste nel cambiamento
apparente, rispetto al valore originario, della frequenza o della lunghezza
d’onda percepita da un osservatore raggiunto da un’onda emessa da una
sorgente che si trovi in movimento rispetto all’osservatore stesso. Se la
sorgente ¢ l’osservatore si muovono entrambi rispetto al mezzo di
propagazione delle onde, I’effetto Doppler totale ¢ derivato dalla
combinazione dei due movimenti. Tale effetto & facilmente percepibile
guando ascoltiamo le sirene di un’ambulanza passante accanto a noi, che
sembrano suonare in modi differenti a seconda che questa si allontani o si
avvicini.

Se una sorgente si sta allontanando emettendo onde di frequenza f, allora un
osservatore stazionario percepira le onde con una frequenza f” data da:

v

f'= f

v+ v

Mentre, se si sta avvicinando:

fr=——f
vV — s
Dove v & la velocita delle onde nel mezzo, mentre v, € la velocita della
sorgente rispetto al mezzo (considerando solo la componente nella direzione
che unisce la sorgente all’osservatore). In termini relativi si pud anche
scrivere:

v
s _f=f _Gw—w) T _

f f f
v
(v—vs_l)f' v
= = —1=
f V—7Vs
V=Vt us v
C v-v, v—

Formula che e equivalente a quella analizzata in precedenza:

AL g

A c



In generale, la formula della frequenza osservata € la seguente:

vt
I _ — Yr
fr=r (v T vs)
Dove v, ¢ la velocita dell’osservatore, v la velocita della sorgente e v la
velocita delle onde nel mezzo considerato. Si distinguono 4 casi:

1. Se l’osservatore va verso la sorgente e questa si avvicina
all’osservatore, allora si considera il segno + al numeratore e il segno
— al denominatore;

2. Sel’osservatore va verso la sorgente e questa si allontana da lui, allora
si considera il segno + sia al numeratore che al denominatore;

3. Se l'osservatore si allontana dalla sorgente e questa si allontana
dall’osservatore, allora si considera il segno — al numeratore e il
segno + al denominatore;

4. Se ’osservatore si allontana dalla sorgente e questa si avvicina a lui,
si considera il segno — sia al numeratore che al denominatore.

Un modo per ricordare i vari casi puo essere il seguente:
meno (1) e piu (2) se mi avvicino

pit (3) e meno (4) se mi allontano



MISCELLANEA

Risoluzione del sistema per il calcolo delle
velocita su orbite non circolari

Vadg = vpd,
1, GmM 1, GmM
—mvg — =-mvy —
2% d, 2P 4,
_ Wy
a da
1, GmM 1, GmM
2T g, T2 T g,
v,d
( p, = 22P
dg
1
igmvﬁd,% GmM 1 GmM
dz dg 2P d,
v,d
v, = pp
dg
1
2% 1, _GM_GM
a2 2% d, 4,



v,d
( v =2
a
1, (d3—d2\ d, —d,
2P \Taz )" dod,
v, d
( vy = 2%
a
d, —d d2
2=26M (2—— =
p (dadp dZ — dz
v, d
v = 2

(5 el

v? = 26M

( Va = vlzlip

2GM dq
v, = -—
P d,(d, +d,)

Sostituendo la formula appena trovata nella prima equazione, si ottiene:



2GM _ B
Ya = do(d, +dy)

Possiamo scrivere le due velocita anche in funzione (cioé in dipendenza) del
semiasse maggiore e dell’eccentricita dell’orbita. Se chiamiamo il semiasse
maggiore dell’orbita ellittica a, valgono le seguenti relazioni:

dqe=a(l+e) dp=a(l—e)

Quindi:

a(l+e)
a(l —e)al—e)+a(l+ e)]

1+e
\/ (1—e)a(1—e+1+e)]
- [or(ire) oy

Sostituendo anche nel caso di Va:

Si ricorda inoltre che:




Angolo di fase

Dalla Terra T si vede il disco di un pianeta O, il cui diametro & AC, illuminato
dal Sole S. 1l disco, visto da T, appare luminoso da AaBescurodaBaC. Si
dice fase del pianeta il rapporto:
_AB
1= ac

Se ¢ = SOT, allora OB = OL * cosa = OA * cosa, Cioe:

_AB A0 + AOcosa A8 (1 + cosa)
T=4c™" 240 T 40«2

B 1+ cosa
=773
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Stelle

Evoluzione stellare e Diagramma H-R
L’evoluzione stellare é 1’insieme dei cambiamenti che una stella sperimenta
nel corso della sua esistenza. La stella nel corso della sua vita subisce
variazioni di luminosita, raggio e temperatura anche molto pronunciate.
Tuttavia, dato che il ciclo vitale di una stella si estende per un tempo molto
lungo su “scala umana”, risulta impossibile per un uomo seguire passo passo
I’intero ciclo di vita. Uno strumento ancora oggi fondamentale per inquadrare
immediatamente lo stato e I’evoluzione di una stella ¢ il diagramma
Hertzsprung-Russell (diagramma H-R). Esso riporta temperatura
superficiale e luminosita (0 classe spettrale e magnitudine), che variano
insieme al raggio in funzione dell’eta, della massa e della composizione
chimica della stella e cosi permette di sapere in che fase essa si trovi.

A

ra

Rarnio
orizzontale .

[}

m:j.—-n.,:-——.—-.#mmg

e

Sequen;.{'a:-. :
principale ™1

Ex

L =T -]
&

hane SREEE

0

+1321

0 it A
Temperatura (1000 K7 a8 .T.

|
e
A

70

Il diagramma Hertzsprung-Russell (dal nome dei due astronomi che verso il
1910 lo idearono indipendentemente) € uno “strumento” teorico che mette in
relazione la temperatura (riportata in ascissa, 0 la classe spettrale) e la




luminosita (riportata in ordinata, o la magnitudine assoluta) delle stelle. Nel
diagramma la temperatura aumenta spostandosi verso sinistra lungo 1’ascissa
e la luminosita cresce salendo lungo I’ordinata.

Dal grafico, € possibile notare che la disposizione delle stelle nel grafico non
e casuale, ma & addensata in alcune regioni. La maggior parte di esse (tra cui
il Sole adesso) si dispone lungo la sequenza principale, una linea che
attraversa il grafico in modo trasversale. Le stelle di questa sequenza
presentano una luminosita che & in forte relazione con la temperatura: le stelle
pil calde (posizionate a sinistra nella sequenza principale) hanno una
luminosita che & milioni di volte superiore a quella delle stelle rosse di bassa
temperatura.

Nel grafico sono presenti anche le zone delle stelle a bassa temperatura e alta
luminosita (zona delle stelle giganti rosse e supergiganti rosse), che
diventano altamente luminose grazie alle loro dimensioni imponenti, e la zona
delle stelle di alta temperatura e bassa luminosita (zona delle stelle nane
bianche), che hanno un diametro molto minore di quello delle stelle di pari
temperatura situate nella sequenza principale.

Ammassi stellari
Un ammasso stellare & un gruppo di stelle molto denso. In generale, le stelle
nascono in gruppi che, inizialmente legati gravitazionalmente, giungono col
tempo a disgregarsi. Essendo nate dalla stessa nebulosa, hanno le stesse
composizioni chimiche. Vi sono 2 tipi principali di ammassi:

e ammassi globulari, gruppi stellari densissimi formati da centinaia di
migliaia di stelle molto vecchie

e ammassi aperti, gruppi stellari che contengono migliaia di stelle
giovani. Sono cosi chiamati perché non hanno alcuna struttura
particolare



Albedo

Nelle sezioni precedenti di questo Bignamino abbiamo sinteticamente trattato
le grandezze principali che caratterizzano la radiazione luminosa, le relazioni
che le coinvolgono e il concetto di spettro elettromagnetico. Adesso vogliamo
fornire alcuni concetti per interpretare “macroscopicamente” 1’interazione
della radiazione luminosa con la materia.

Ogni oggetto interagisce con la radiazione luminosa. Immaginiamo dunque
un raggio luminoso, caratterizzato da una certa lunghezza d’onda A, che si
avvicina alla superficie di un oggetto: tale raggio che si avvicina all’oggetto
verra chiamato raggio incidente. Se immaginiamo di mandare la retta
perpendicolare alla superficie dell’oggetto nel punto in cui il suddetto raggio
incide, la “direzione di provenienza” del raggio si pud caratterizzare
attraverso 1’angolo che esso forma con tale retta perpendicolare: quest’angolo
si chiamera angolo d’incidenza.

A questo punto 1’oggetto potra interagire con la radiazione luminosa in tre
modi:

1) |1l raggio pud essere riflesso, come succede quando ci specchiamo:
vediamo la nostra immagine riflessa in uno specchio perché i raggi
luminosi che provengono dal nostro corpo “rimbalzano” sulla
superficie della lastra metallica levigata posta dietro il vetro dello
specchio e tornano ai nostri occhi;

2) 1l raggio puo essere assorbito dal corpo su cui incide;

3) Il raggio puo essere trasmesso, cioé “entra” nel corpo nel punto di
incidenza ed “esce” in un altro punto.

Dato un corpo, tutti questi fenomeni dipendono in generale da molti
parametri: 1’angolo di incidenza della luce, la lunghezza d’onda della luce
incidente, e anche la posizione del punto d’incidenza, visto che la
composizione di un oggetto pud cambiare da punto a punto (I’esempio ¢ una
roccia costituita da vari minerali diversi).

Per la conservazione dell’energia, la somma delle intensita delle radiazioni
riflessa, trasmessa e assorbita dev’essere uguale al totale della radiazione
incidente.



Un corpo puo essere tale da non farsi attraversare dalla radiazione luminosa.
Nel caso nostro, i pianeti ne sono un esempio. Come caratterizzare dunque
complessivamente la riflessione e [’assorbimento della radiazione
elettromagnetica da parte delle superfici planetarie? Il parametro che viene
introdotto & 1’albedo.

L’albedo di una determinata superficie ¢ definita come il rapporto fra
Pintensita della radiazione riflessa dalla superficie stessa e la radiazione
totale incidente su tale superficie. In generale, ogni tipo di materiale ha una
sua albedo (vd. Tabella allegata in conclusione di questo Bignamino).

L’albedo ¢ una grandezza adimensionale (NUMero puro) in quanto rapporto
di due grandezze omogenee; ¢ un numero compreso fra 0 e 1 (I’intensita della
radiazione riflessa non pud mai superare quella della radiazione incidente) e
puo essere espressa in percentuale moltiplicando per 100%.

L’albedo “complessiva” di una
superficie planetaria dipende
dunque dalla composizione
della superficie: € appunto un
dato che ci informa se la
superficie €& costituita da
materiali molto riflettenti o

poco riflettenti.

La superficie con
neve e ghiaccio
riflette piu radiazione

La superfic senza
- Siccome i pianeti  non
trasmettono sostanzialmente la
radiazione luminosa che incide su di essi, per la conservazione dell’energia la
radiazione che non viene riflessa viene assorbita. Sempre per la conservazione
dell’energia, la percentuale di intensita che viene assorbita sara uguale al
100% meno 1’albedo.



La quantita di luce riflessa determina la magnitudine di un pianeta, mentre la
quantita di radiazione assorbita ne determina la sua temperatura, come si potra
evincere dai due seguenti esempio molto istruttivi formulati come esercizi
teorici:

Esercizio 1: Determinare la magnitudine apparente di un pianeta sferico di
raggio R visto da un altro pianeta a distanza d da esso, nell’ipotesi che il
pianeta venga visto all opposizione e si trovi a distanza a dalla stella madre,
avente magnitudine my . Sia a, la distanza del secondo pianeta dalla stella
madre.

Per prima cosa scriviamo la formula di Pogson ponendoci sul pianeta da cui
si “osserva” la scena (lo chiameremo pianeta B, mentre il pianeta P sara quello
di cui si vuole calcolare la magnitudine), confrontando la magnitudine
incognita del pianeta (m) con quella della stella

F
m—m; = —2.5log <Fs>
Dove con F si é indicato il flusso che proviene da P e arriva su B, mentre con
F, il flusso dalla stella al pianeta B. Come calcolare questo rapporto?
Dobbiamo calcolare F. Per prima cosa calcoliamo il flusso della stella F;’ alla
distanza di P dalla stella:




(Ls = luminosita stella)
Il flusso F; sara invece uguale a:

Ls

s = 2
4maf

La quantita di energia intercettata dalla superficie di P ogni secondo e
direttamente proporzionale all’area della sua sezione (un cerchio di raggio R):

Line = F§ * mR?

Mentre la potenza (energia al secondo) riflessa da P sara uguale alla
luminosita riflessa moltiplicata per I’albedo di P (che indicheremo con la
lettera A):

Lyify = Line x A

Se solo una faccia del pianeta é illuminata,
possiamo assumere che la luce riflessa si
propaghi su superfici semisferiche centrate
nel pianeta B, dunque il flusso che da P arriva
a B sara:

L.
F= rifl
2md?

Applicando tutte le relazioni trovate sopra a
quest’ultima:

Lyt Line*A K xmR*xA  LyR*A
2nd? 2md? 27d? "~ 8ma? d?

Quindi finalmente:

LyR*>A 4ma? R?alA

F
E_BnaZdZ* Ly 2d?aq?




Questo rapporto si pud sostituire nella Formula di Pogson e ottenere
I’espressione della corrispondente magnitudine apparente del pianeta P visto
dal pianeta B.

Esercizio 2: Determinare la temperatura d’equilibrio della superficie di un
pianeta sferico di raggio r a distanza a dalla sua stella madre, di raggioR e
temperatura T, assumendo che sia la stella sia il pianeta si comportino come
corpi neri. Sia A ’albedo del pianeta.

La stella emette come un corpo nero, dunque vale la Legge di Stefan-
Boltzmann:

Lgtonq = 4mR%0T* 0 =567107°"—

Il flusso stellare che arriva alla distanza del pianeta é:

Lstella R2
- = —0‘T4

Fstella AT a2 a?

La luminosita intercettata dalla superficie del pianeta sara pari a questo flusso
moltiplicato per la superficie della sezione del pianeta (un cerchio di raggio
R, vedi esercizio teorico precedente):
RZ
Linec = ?O'T‘L * 12
La quantita di energia assorbita ogni secondo sara pari a una frazione 1 — A
del totale incidente:



RZ
Lyss = (1—A) * EGT‘* * 772

All’equilibrio, la potenza assorbita dal pianeta dev’essere uguale a quella
emessa per irraggiamento dalla superficie del pianeta stesso (se il corpo é
all’equilibrio termico non ci dev’essere calore “netto” assorbito o ceduto,
altrimenti varierebbe la temperatura): ma se assumiamo che il pianeta stesso
sia un corpo nero, anche per quest’emissione varra la legge di Stefan-
Boltzmann:

Lass = Lemessa

RZ
(1-A4)* EO'T‘L xr? = 4mr?oT,

Dove T, ¢ la temperatura che stiamo cercando.

(1 - A)R?
a2

T*=4T, dacui




PROBLEMI ED ESERCIZI

Sistemi di riferimento

L’altezza di Rigel
Quando la stella Rigel (6§ = —8°13’) passa al meridiano di Roma (¢ =
41°55’) a quale altezza si trova?

Soluzione:

Quando la stella Rigel passa al meridiano di Roma essa raggiunge la posizione
di culminazione superiore in corrispondenza del punto cardinale Sud. Dunque
la sua altezza sull’orizzonte ¢ pari all’altezza dell’Equatore celeste alla
latitudine di Roma (90°-¢) sommata alla declinazione dell’astro. Dunque:

hRigel =90° — ¢ + 6 = 90° — 41°55’ — 8°13’ = 39°52’

Dove vedere Canopo
A quale latitudine comincia a essere visibile la stella Canopo (6 = —52°40’)
appena all’orizzonte?

Soluzione:

Affinché la stella Canopo sia appena visibile all’orizzonte per un osservatore
posto alla latitudine o, ¢ necessario che I’Equatore celeste abbia un’altezza
sull’orizzonte pari al valore assoluto della sua declinazione. Quindi &
necessario che 90° — ¢ = |§] e cioe:

@ =90° — |§] = 90° — 52°40" = 37°20’

In realta bisogna tenere conto dell’effetto della rifrazione atmosferica che
“alza le stelle” o equivalentemente “abbassa 1’orizzonte” di un angolo di 35°.
Quindi in realta Canopo si pud osservare anche a una latitudine leggermente
piu settentrionale pari a 37°20’ 4+ 0°35’ = 37°55’ circa.



Questione di ombre

Quale curva descrive I’ombra di uno stilo verticale posto al polo nord il 21
giugno? Qual ¢ il rapporto fra la lunghezza 1 dell’ombra e 1’altezza h dello
stilo?

Soluzione:

Il 21 giugno il Sole ha declinazione massima, pari al valore dell’obliquita
dell’eclittica, quindi circa 23°27°. Dal momento che al polo nord I’orizzonte
coincide con I’Equatore celeste e i paralleli celesti si trovano quindi su piani
paralleli all’orizzonte, la rotazione diurna non contribuira a far tramontare il
Sole, che descrivera una circonferenza nel cielo; pertanto la curva descritta
dallo stilo verticale & una circonferenza. Il rapporto I/h é il reciproco della
tangente dell’altezza del sole, pari a 23°27’

l 1

—_— == 2.
h tan23°27' 3

Il Sole dei Cinesi — Problema gara IAO 2002

I Cinesi, nel 1100 a.C., avevano trovato che ’altezza del Sole a mezzodi era
79°7’ nel solstizio estivo e 31°19 in quello invernale. A quale latitudine
hanno fatto 1’osservazione e qual era allora I’obliquita dell’Eclittica?

Soluzione:

La media aritmetica dei valori delle due culminazioni del sole a mezzodi al
solstizio estivo ed invernale ¢ pari all’altezza dell’Equatore celeste. Quindi:

90° — ¢ = hestate T Rinverno - =90°— Restate +2hinverno

= 34°47'
2

L’obliquita dell’eclittica ¢ la differenza fra 1’altezza massima del sole e
’altezza dell’Equatore celeste:

€ = hpseare — (90° — @) = 79°7' — 90° + 34°47' = 23°54.

In generale, I’obliquita dell’eclittica varia da 21°55” a 24°20°, con un periodo
di circa 40000 anni.



Osservazione di una stella
Ci troviamo in un luogo di latitudine ¢ = 42°30'15" N e longitudine
A =15°28"18"E. QOsserviamo una stella, di ascensione retta
5h 32 min 3 sec e declinazione —00° 15’ 20”, che passa al meridiano alle
20:30 del 14/01/2020. A quale altezza culminava? Quale era la sua distanza
zenitale? In quale data, dallo stesso luogo e allo stesso orario, si € potuto
vederla sorgere ad est?
Soluzione:
L’altezza massima di una stella (quando culmina) ¢ data dalla relazione:
h=90°—¢@+§

Quindi:

h =90°—42°30"15" — 0° 15'20"=47° 14' 25"
La distanza zenitale é invece data da:

z=90°—h =90°—47°14'25" = 42°45'35"

Un dato importante per poter rispondere alla terza richiesta é sapere che le
stelle “anticipano” il loro sorgere di 3 min 56 sec/giorno.

Quindi per sapere quanti giorni prima la stella sorgeva ad est (m):

a (5h32min3sec)
m=—= — -
At 3mMin 565€C¢/giorno

= 84 giorni

84 giorni prima del 14/01/2020 era il 21/10/2019.



| moti della Terra e la misura del tempo

Quando (non) osservare Castore
In quale istante di tempo siderale la stella Castore (a = 7h 33m 31s;
6 = +31°55’35”) é alla culminazione inferiore?

Soluzione:

Alla culminazione inferiore la stella Castore ha un angolo orario pari a 12h. Il
tempo siderale, ossia I’angolo orario del punto gamma, & uguale alla somma
di angolo orario e ascensione retta di una generica stella; in questo caso:

TS=a+H=7h33m31s + 12h = 19h33m 31s

Passaggi al meridiano
Se in un dato giorno una stella passa al meridiano inferiore alle 21, a quale
ora (all’incirca) vi passera un mese dopo?

Soluzione:

L’ora a cui si riferisce il problema ¢, per esempio, quella indicata da un
normale orologio, quindi € un tempo solare medio e non siderale. Siccome nel
corso di un mese la stella non cambia la sua posizione rispetto al punto
gamma, se il problema avesse chiesto 1’ora siderale della successiva
culminazione inferiore la risposta sarebbe stata comunque “alle 21”’; siccome
pero il problema si riferisce a un tempo solare medio, dobbiamo tenere conto
della differenza tra giorno solare e giorno siderale: quest’ultimo € piu corto
del primo di un valore pari a circa 4 minuti (piu esattamente 3min 56s).
Siccome un mese contiene mediamente 30 giorni, la stella anticipera la sua
culminazione di circa 4min * 30 = 120min = 2h e quindi culminera
all’incirca alle 19.



Longitudini diverse, tempi diversi

Una citta A ¢ posta alla longitudine 43°12” E di GW (Greenwich). Quando in
A D’orologio segna le 20h35m siderali, in un’altra citta B I’orologio segna le
23h12m siderali. Qual ¢ la longitudine di B?

Soluzione:

La differenza dei due tempi siderali che 1’orologio segna in A e in B € uguale
alla differenza delle longitudini dei due luoghi. Quindi:

AL = ATS
Ag— A, =TSz — TS,
Ag =TSg — TS, + A4(espressa in ore!)
Ag = 23h12m — 20h35m + 2h53m = 5h30m
Trasformo in gradi:

Ap = 82°30'

Da un segno zodiacale all’altro
Quanto tempo € necessario affinché il punto gamma passi da un segno
zodiacale a un altro?

Soluzione:

Il punto gamma non é fisso nel cielo, bensi, per via di uno dei moti millenari
della Terra, il moto di precessione, esso si sposta di circa 50” all’anno lungo
I’Eclittica. Dal momento che i segni zodiacali sono dodici, in media ognuno
di essi occupa un settore lungo 1’Eclittica pari a 360/12 = 30° = 108000”.
Ne discende che il tempo necessario affinché il punto gamma copra questa
distanza angolare risultapariat = (108000”/50”) anni = 2160 anni circa.



Che velocita!

La Terra impiega circa 23 ore e 56 minuti a compiere una rotazione completa
attorno al proprio asse. Con quale velocita tangenziale si muove un punto
all’equatore per effetto del moto di rotazione della Terra? Quanto vale
I’accelerazione centripeta che agisce su questo punto? Quale forza centripeta
agisce su un corpo di massa 1,3 kg all’equatore?

Soluzione:

Il problema, incentrato sul moto di rotazione terrestre (il moto dei punti della

Terra attorno all’asse terrestre) € un semplice esercizio di cinematica.

Conoscendo il periodo e la lunghezza della circonferenza equatoriale (poiché

e noto che il raggio della Terra ha un valore di 6378 km), & possibile

determinare la velocita di rotazione all’equatore: il moto ¢ circolare uniforme:
2nR  2mt-6378km

VET T o303 74

L’accelerazione centripeta vale:

_v? (1674 +3,6)* 339-10-3™
“=R T 6378000 52
Per la seconda legge della dinamica, la forza centripeta su un corpo di massa

m allora vale:

F=ma=13-339-10"3=44,1-10"3N

Che ore sono a Belo Horizonte?

In un dato luogo, a che ora di tempo siderale culmina il Sole medio in un dato
giorno, sapendo che sedici giorni prima esso culminava alle 15h 12m 48s di
tempo siderale? Se ci troviamo a Belo Horizonte (longitudine A = 43°56’16”
W) al mezzogiorno vero e I’equazione del tempo per quel giorno ¢ paria ET =
—8m7s, che ora segna 1’orologio dell’osservatore?

Soluzione:

La prima richiesta del problema si risolve tenendo conto che giorno solare
medio e giorno siderale hanno diversa durata: infatti il giorno siderale é piu



corto del giorno solare medio di circa 3m56s. Pertanto, se in un dato giorno
il punto gamma e il Sole medio hanno raggiunto la culminazione nel
medesimo istante, il giorno successivo il Sole medio culminera 3m56s dopo
il punto gamma. Quindi il Sole accumulera un ritardo pari a 16 * 3m56s =
1h2m56s che andra sommato all’ora siderale data dal problema:

TS =15h12m 48s + 1h2m 56s = 16h 15m 44s

Se a Belo Horizonte &€ mezzogiorno vero, vuol dire che sono le 12h di tempo
solare vero. L’equazione del tempo ¢ la differenza fra tempo solare medio e
tempo solare vero, quindi:

TSM —TSV =ET
TSM =TSV +ET =12h — 8m7s = 11h51m 53s

L’orologio dell’osservatore ¢ perd in accordo col tempo del meridiano
centrale del fuso di Belo Horizonte, che ha longitudine 3h W, mentre Belo
Horizonte ha longitudine 2h 55m 45s W: essa € quindi piu avanti di:

3h — 2h 55m 45s = 4m 15s

L’orologio segnera quindi le ore 11h 51m 53s — 4m 15s = 11h 47m 38s

Che ore sono a Bergamo?

A Bergamo (A= 9° 40’ 12” E) i raggi del Sole, in un dato momento, si
proiettano esattamente sulla linea della meridiana di Citta Alta. In quel dato
giorno 1’equazione del tempo € +5m 12s. se il tempo siderale a mezzanotte di
quel giorno a Greenwich risultava pari a 3h 21m 20s, qual & il tempo siderale
a Greenwich nell’istante del problema?

Soluzione:

La longitudine di Bergamo, espressa in ore, minuti e secondi € 38m 41s E. Se
il disco luminoso si proietta sulla linea meridiana, &€ mezzogiorno vero; quindi
il tempo solare medio sara pari a:

TSM = TSV + ET = 12h + 5m12s = 12h5m 12s



Greenwich si trova 38m 41s a ovest di Bergamo, quindi & anche 38m 41s
indietro: a Greenwich sono quindi le:

12h5m12s — 38m41s = 11h 26m 31s

Sono passate quindi 11h 26m 31s dalla mezzanotte: per convertire questo
tempo medio in tempo siderale moltiplichiamo per il fattore di conversione
366.25/365.25:

366.25
365.25

ATS (Greenwich) = ( )* (11.4419444 h) = 11.4732394h =

= 11h 28m 24s
Quindi a Greenwich sono le:
3h21m 20s + 11h 28m 24s = 14h 49m 44s

di tempo siderale.

Curve solari

Si valuti, argomentando opportunamente, come varia I’Equazione del Tempo
nel corso dell’anno solare; se in un piano cartesiano in ascissa indichiamo
I’ET e in ordinata la declinazione del Sole, che curva si ottiene?

Risposta:

L’equazione del tempo si annulla quattro volte I’anno: a meta aprile, a meta
giugno, verso Natale e ai primi di settembre: il sole medio e il sole vero
culminano contemporaneamente; (1) Da Natale a meta aprile il sole medio
anticipa il sole vero; (2) da meta aprile a meta giugno il sole vero anticipa il
sole medio; da meta giugno a inizio settembre come (1) e da inizio settembre
a Natale come (2). Oltre a “oscillare in orizzontale”, in un anno il sole “oscilla
in verticale”, nel senso che assume declinazioni da 23°27’ a -23°27’. La curva
che si ottiene ¢ quindi una sorta di “8” chiamata analemma: essa & anche la
curva che e formata dalle posizioni in cielo del sole vero registrate a
mezzogiorno medio locale ogni giorno dell’anno.



Bignamino di Astronomia
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Figura 1. Analemma DEC/ET

Figura 2. Analemma visualizzato nel cielo di Atene



Orologi stellari

Una stella di ascensione retta AR=11h 12m 13s culmina in un dato luogo della
Terra alle ore 13h 04m 02s di tempo medio. Considerando che a Greenwich
culmina una stella con ascensione retta 8h 11m 58s, dire che orario segna
I’orologio dell’osservatore in quel dato luogo della Terra.

Soluzione:

Il tempo siderale in un dato luogo ¢ uguale all’ascensione retta delle stelle che
si trovano a culminare al meridiano superiore. Quindi in questo luogo della
Terra il tempo siderale € pari a 11h 12m 13s; a Greenwich il tempo siderale &
pari a 8h 11m 58s. Notiamo come il luogo dove si trova 1’osservatore ha
longitudine est: infatti & pit avanti di Greenwich di circa 3 ore, quindi é pit a
Est di Greenwich. La differenza fra I’ora siderale dell’osservatore e quella a
Greenwich da la longitudine del luogo (differenza fra longitudine del luogo e
longitudine di Greenwich che & 0 perché il suo meridiano € origine delle
longitudini):

A=TS —-TS(GW) = 11h12m13s — 8h11m58s = 3h O0m 15s E

Questo luogo segue il meridiano che ha longitudine 3h E, quindi & in anticipo
rispetto a esso di appena 15s: pertanto il suo orologio segnera le ore:

13h 04m 02s — 15s = 13h 03m 47s

Tempi siderali
Il tempo siderale di un luogo (¢ = 28°30'45"'S; A =90°23'50"W ) édi
9h 3min 45sec. Quale ¢ il tempo siderale di GW?

Soluzione:

Il primo passaggio da fare é trasformare la longitudine del luogo da gradi in
ore. Quindi:

15°:1h =90° 23'50"": 4

1h
A =90°23'50" - Tk 6h 1 min 35.33sec



Il tempo siderale del luogo é legato a quello di GW dalla seguente relazione:
Ts=TGw+ 1
Quindi:
TGw =Ts — A =9h 3 min 45sec — (—6h 1 min 35.33sec ) =
= 9h 3min45sec+ 6h 1 min 35.33sec = 15h 5 min 20sec



Il cielo visto dalla Terra e dalla Luna

Distanze stellari

Due stelle equatoriali hanno parallassi 0”.022 e 0”.034; esse hanno AR
12h13m e 13h12m rispettivamente. Quant’¢ in parsec la loro reciproca
distanza?

Soluzione:

L’angolo fra la direzione con cui si proietta in cielo la prima stella e la
direzione della seconda stella ¢ pari alla differenza delle ascensioni rette: le
stelle sono infatti equatoriali, cioé hanno declinazione nulla:

AAR = 13h12m — 12h13m
Trasformando in gradi:

AAR = 14°.75

La loro distanza dall’osservatore &, in parsec, pari al reciproco della
parallasse:

1
dy = <_> = 0022 ¥oope

1 1
d =(—)=—=29.4
2 0.034 pe

Il problema chiede in sostanza di calcolare un lato di un triangolo con vertici
nell’osservatore e nelle due stelle (in particolare il lato con estremi nelle due
stelle) noti 1’angolo opposto a tale lato e gli altri due lati: possiamo quindi
usare il Teorema di Carnot (o teorema del coseno):

x = \/d% + d? — 2d,d, cos(AAR) = 18.6 pc



Sinodico del Sole

Sapendo che il periodo siderale di rotazione del Sole all’Equatore ¢ di 25
giorni, trovare il periodo di rivoluzione sinodica, cioé quello che appare visto
dalla Terra.

Soluzione:

Prendiamo un punto sull’Equatore del Sole: esso si muove con un periodo
siderale (ciog riferito a una stella lontana) pari, come indicato dalla traccia, a
25 giorni. Il problema é del tutto analogo al calcolo del tempo sinodico di un
pianeta interno visto dalla Terra noti i periodi di entrambi i corpi.

1 1 1

S Tsole Tterra

o TierraTsole _ 365.25°25 i 9131.25
" Trerra — Tsote  365.25—25  340.25

d = 26.84d

Solo ombre, non penombre
A quale distanza da uno schermo deve essere posta una sfera di raggio R
affinché, illuminata dal Sole, non generi ombra ma solo penombra? (il
diametro apparente del Sole sia 32’.)

Soluzione:

Concettualmente il problema ¢ equivalente alla situazione di un’eclisse:
1’’osservatore” € lo schermo, mentre fra esso e il Sole si frappone un ostacolo.
Esso, intercettando i raggi solari, genera dietro di sé un cono d’ombra, e, molto
piu ampio di questo, una zona di penombra. 1l cono si restringe dalla parte
opposta del Sole rispetto alla sfera. Se il vertice del cono si trova sullo
schermo, allora nessun punto dello schermo si trovera in ombra perché il cono
non interseca lo schermo. In questa configurazione, 1’angolo sotto cui viene
vista la sfera dallo schermo ¢ di 32, ovvero 0,53°, da cui si ha:

R_, (053
2="(7)



E cioé:
d =[1/tan(0.265)] * R = 214.8 R circa

La sfera dev’essere posta a una distanza dallo schermo maggiore di 214,8
volte circa il suo raggio.

Guarda che Luna!

11 29 marzo 2006 si € verificata un’eclisse totale di Sole, visibile dall’Africa
settentrionale e dal Mediterraneo orientale. Quale fase aveva la luna il 29
marzo 2007, cioe esattamente un anno dopo?

Soluzione:

Le eclissi di Sole si verificano quando la Luna si interpone fra il Sole e la
Terra, oscurando una fascia sulla superficie del nostro pianeta con il suo cono
d’ombra: pertanto, la Luna rivolge a noi, in quest’occasione, la sua faccia non
illuminata dal Sole e pertanto & nuova. Conosciamo inoltre il periodo in cui si
ripetono le fasi lunari: € il mese sinodico, la cui durata € pari a 29,5306 giorni.
L’intervallo considerato (un anno, in cui il 2007 non ¢ bisestile), & pari a 365
giorni. Siccome 365/29.5306 = 12.36, ossia 12 mesi lunari e 11 giorni, se
ne deduce che I’eta della Luna al 29 marzo 2007 era di 11 giorni, quindi essa
era in una fase intermedia tra primo quarto e Luna piena.



Gravitazione e leggi di Keplero

L’alieno Bzzapp

L’alieno Bzzapp ha appena comprato una navicella in grado di creare nuovi
pianeti; nel suo girovagare, un giorno incappa nel nostro Sistema Solare;
decide cosi di creare con la sua astronave qualche nuovo pianeta. I.’amico
Zorzzp gli da prima una regola, dicendogli che questi pianeti devono trovarsi
in una fascia compresa fra 2 U.A. e 7 U.A.; in piu, il loro periodo di
rivoluzione dev’essere pari a un numero intero di anni. Qual ¢ il numero
massimo di pianeti che Bzzapp potra creare con la sua navicella
conformemente alla regola di Zorzzp?

Soluzione:

Per la risoluzione del problema & necessaria la Terza legge di Keplero,
considerando che ci troviamo nel nostro Sistema Solare e che quindi la
costante di proporzionalita fra cubo del semiasse maggiore e quadrato del
periodo di rivoluzione per un generico corpo orbitante attorno al Sole, quando
esprimiamo il semiasse in UA e il periodo in anni, risulta pari a 1.

T1 =4/ a13 = 2.83 y

T, = /ag =1852y

Come possiamo vedere, i periodi “possibili” sono 3, 4, 5, 6, 7, 8, 9, 10, 11,
12,13, 14, 15, 16, 17 e 18 anni: Bzzapp potra creare ben 16 pianeti!

Modellini del Sistema solare

Disponendo come dati noti dei soli periodi di rivoluzione dei pianeti, si indichi
la lunghezza minima che deve avere un foglio di carta per poter rappresentare
in scala il Sistema Solare fino a Nettuno, nell’ipotesi di voler rappresentare
Mercurio a una distanza dal Sole di 1 cm.



Soluzione:

Mercurio ha un periodo di rivoluzione pari a 0.241 anni mentre Nettuno
164.88 anni: quindi, per la Terza legge di Keplero:

ay = 3/T,5, = 0.387UA
ay = 3/T1\2, = 30.069 UA

Con una semplice proporzione ricaviamo la lunghezza del foglio di carta:
ay:ay =1:x

~30.069
"~ 0.387

cm = 77.7cm

Questioni di una certa gravita

A quale distanza dalla superficie della Terra, per un’astronave che viaggia
verso la Luna, si annulla la risultante delle forze gravitazionali che agiscono
su di essa? (il rapporto massa della Terra/ massa della Luna € pari a 81.25).

Soluzione:

La distanza Terra-Luna ¢ pari a d=384400 km. Quando 1’astronave si trova
fra il nostro pianeta e il suo satellite, le due forze di natura gravitazionale che
agiscono su di essa sono la forza di attrazione della Terra e quella della Luna,
agenti nella stessa direzione ma aventi verso opposto. Chiamando x la
distanza che separa la navicella dal centro della Terra, possiamo esprimere in
funzione di x la distanza che separa la navicella dalla Luna, essendo essa pari
a d-x. Eguagliamo le due forze di attrazione gravitazionale per trovare x.

GMrm  GMym
x2  (d—x)?




Operando le dovute semplificazioni (G e la massa dell’astronave) e dividendo:

X M
= f—T =+/81.25 = 9.01
- X M;

d
9.01d

x = 1001 - 0.90 * 384400km = 346013km

Il problema viene considerato parzialmente corretto se ci si ferma a questo
punto, perché esso chiede la distanza dalla superficie terrestre mentre x €
misurata dal centro della Terra: pertanto la soluzione corretta €:

D =x—R = (346013 — 6378)km = 339635km

L’astronomo Qwzzz

Osservando la stella Canopo con un telescopio potentissimo, 1’astronomo
Qwzzz ha scoperto due pianeti orbitanti attorno a essa, le cui orbite sono
esattamente perpendicolari alla nostra linea di vista. La distanza massima del
primo pianeta da Canopo e uguale a 4.7 volte la sua distanza minima, e il suo
periodo di rivoluzione é pari a 2.7 anni. Il secondo pianeta, avente eccentricita
pari a 0.324, al periapside € 3 volte pit lontano rispetto al primo (quando
quest’ultimo si trova nella corrispondente posizione). Quanto vale
I’eccentricita del primo pianeta e il periodo di rivoluzione del secondo?

Soluzione:

Chiamiamo 1 il primo pianeta e 2 il secondo:

@: _ a;(1+¢ep)
dpl . a;(1—eq)
1+e
=47
1—¢

e = 0.64‘9



dpz _ a2(1—e3) _
dpl a;(1—e;)
a, (1—e)dy, (1 —0.649
a; dy(1—e;) ~\1-0324

Per la Terza legge di Keplero:

) — 1.558

T, = 2.7 yy/1.5583 =524y

Il distante Giove

Calcolare il semiasse maggiore dell’orbita di Giove, in kilometri, sapendo che
il suo periodo di rivoluzione é T; = 374.11-10° s

Soluzione:

T, (secondi) 3 374.11-10%s

secondi in un anno) L4 ._S
( ) 3600 24-365 —

T;(anni) =

T = 11.863 anni

1 anno?

1U.A3

Impostando la terza legge di Keplero e imponendo che K =

TZ

3K

ag(U.A.) = {/[T;(anni)]? = {/(11.863 anni)? = 5.2 U. A.

ag = 777.92-10° km



Quanto tempo, Marte!
Calcolare il periodo di rivoluzione di Marte, in giorni, sapendo che il suo
semiasse maggiore misura a,, = 227.9-10°m .

Soluzione:
ay (m) 227.9-10°m
ay(U.A.) = = — = 1.52U.A
149.6 - 10 ‘U A 149.6- 10 "UA
. . 1 anno?

Impostando la terza legge di Keplero e imponendo che K = TVE

T2

sk

Ty (anni) = \/[ay (U.A.)]? = /(1.52 U.A.)3 = 1.87 anni = 684 giorni

Veloce o0 non veloce...

Approssimando ’orbita di Venere a una circonferenza, calcolare la velocita
media v del pianeta intorno al Sole sapendo che il suo periodo di rivoluzione
eT, =19.41-10%s

Soluzione:
) Ty (secondi) 19,41-10%s
Ty (anni) = — = S
(secondiinun anno) 360024365 -
anno
Ty = 0,61 anni
. . 1 anno?
Impostando la terza legge di Keplero e imponendo che K = VE

ay(U.A.) = [Ty (anni)]? = 3/(0.61 anni)? = 0.72 U. A.
a, = 107.6 - 10° km

_ 2may  2m-107.6-10°km 34.83 km
Ve, T T 19411065 0T




Un pianeta “cadente”
Un pianeta sta cadendo sulla sua stella seguendo una traiettoria rettilinea: se
si conosce I’altezza di caduta, h, si determini il tempo di caduta t.

Soluzione:

Per risolvere questo problema si potrebbe erroneamente pensare di applicare
le leggi del moto rettilineo uniformemente accelerato (come nel caso di una
penna che cade dalla scrivania).
Consideriamo pero un corpo (di massa m) che si trova a una certa altezza dal
suolo: la sua forza peso equivale alla forza di attrazione gravitazionale tra il
corpo e il pianeta (di raggio R e massa M) su cui si trova

mMG GM

mg =—— cloe =—

I=®+n2 I=®+n)2
Come possiamo vedere, I’accelerazione di gravita g non si mantiene costante
al variare dell’altezza, ma varia; noi la assumiamo costante al suolo ¢ pari a
circa 9,81 m/s"2 solo perché in quel caso Ah=0!

Quindi non possiamo applicare le leggi del moto rettilineo
uniformemente accelerato a questo problema! Come risolverlo allora?

All’inizio di questi appunti abbiamo evidenziato che [’eccentricita di
un’ellisse indica quanto ’ellisse ¢ “schiacciata” se dunque I’eccentricita
tende a 1, la traiettoria tende a un segmento!

Quindi possiamo assumere che il pianeta cada seguendo un’orbita ellittica con
eccentricitd prossima a 1, e dunque semiasse maggiore a pari a h/2 (vedi
figura):



Se conosciamo la massa M della stella, possiamo applicare la Il legge di
Keplero generalizzata:

Naturalmente questo ¢ il periodo completo dell’orbita. 11 periodo di caduta ¢
la meta:



Stelle e magnitudini

Un oggetto strano

Pochi giorni fa si e registrato un nuovo oggetto che si comporta
apparentemente come una binaria a eclisse. Tuttavia il periodo non ¢ stabile:
la magnitudine dell’oggetto ¢ in genere pari a 24.32, ma ogni 7-11 secondi
sale a 24.52 per 0.2-0.3 secondi. Dopo un’accurata analisi del problema si €
capito che 1’oggetto splendente ¢ costituito dagli occhi di un gruppo di gatti
assolutamente neri seduti su un piccolo corpo del sistema solare, nero, e con
gli sguardi rivolti verso il sole. Uno dei gatti batte ogni tanto le palpebre.
Quanti gatti ci sono?

Soluzione:

Sia N il numero di occhi, la cui determinazione é richiesta dal problema.
Quando il gatto nero del problema chiude gli occhi, il numero di occhi che
contribuisce alla magnitudine complessiva scende di due unita (N-2). Se
consideriamo che gli occhi dei gatti sono tutti gli stessi, ciascuno di essi ci
invia un flusso pari a F. Avendo entrambe le magnitudini corrispondenti alla
situazione “tutti gli N occhi aperti” (24.32) e “N-2 occhi aperti” (24.52),
possiamo scrivere la formula di Pogson tenendo conto dei flussi complessivi:

F*(N—2)
Mmin — Mmax = —2,5l0g [W]
N -2 Mmax—Mmin
— =10 2,5 = 107908 = 0.832
N
= 0168 ~ 12 occhi

ossia 6 gatti



La galassia di Andromeda

La galassia di Andromeda ha una magnitudine apparente integrata
mv = 4.40 e appare in cielo come un’ellisse i cui semiassi hanno
dimensioni angolari di circa 190 arcmin e 60 arcmin. Sapendo che la
sua distanza & di circa 2.54 milioni di anni luce, calcolare la
magnitudine assoluta e la magnitudine apparente superficiale media
della galassia. (Gara Interregionale Categoria Senior, 2018)

Soluzione:

La distanza della galassia di Andromeda in pc é:

d(pc) =2.54 =10°%3.262 = 778 % 103 pc

La magnitudine assoluta € data dalla relazione:

Mv = mv + 5 — 5logd(pc) = —20.1

Per calcolare la magnitudine apparente superficiale dobbiamo calcolare
I’area apparente della galassia:

A=mab = n190 - 60 =
= 35.8 - 103 arcmin? = 129 - 106 arcsec?

La magnitudine apparente superficiale (mg,,) si ottiene dalla
relazione:

mag
msup = mv +25logd =158 ——— =
arcmin

= 24.7mag/arcsec?



Una variabile pulsante

Si consideri una stella variabile “pulsante” la cui magnitudine assoluta varia
nell’intervallo: M; = 3.25 e M, = 2.26, con una temperatura effettiva che
al massimo di luminositaé T, = 5500 K e al minimo di luminositaé T, =
5000 K. Calcolare quanto varia il raggio della stella tra il minimo e il
massimo di luminosita. Esprimere il risultato come rapporto tra raggio
massimo e raggio minimo e come differenza tra i due raggi in km. (Gara
Interregionale Categoria Senior, 2017)

Soluzione:

La luminosita di una stella & definita dalla relazione:
L=4mwR%20T*

Per ricavare il rapporto tra i raggi al massimo e minimo di luminosita
utilizziamo la formula di Pogson:
[4n(R,) %0 (Tz)‘*]} _

L,
M, — M; = — 2.5log (L_1> = —2.5log {[4n(R1)2 o (T)*]

= —2.5log <(£—i)2 i (7%)4>

E quindi:
0.396 = log <(&)2 . (§)4> = log ((&)2 . 1.464>
R, T, R,
Da cui:
0.396 = 2log (g—i) + logl.464
Ovvero:
0.115 = log (R,/R;)
E infine:

(Ry/Ry) = 1.30



Per ottenere la differenza in km, calcoliamo il raggio della stella al massimo
di luminosita confrontando i suoi dati con una stella di caratteristiche note: il
Sole. Avremo quindi:

= o ==25t00|(5) + (2) ]
- =—=25log||l=) * |=
2 S RS TS

E quindi:
1.03 = 2logR, — 2log Ry + 41log 0.9519
Da cui si ricava:
R, = 2513 - 103 km = 3.61Rs
R; = 1933 - 103 km = 2.78 Rs

la variazione del raggio in km vale quindi: AR = 580 - 103 km

Una variabile pulsante

La supergigante rossa Betelgeuse ha una magnitudine apparente
my = +0.42 e una parallasse m; = 0.005”, mentre la supergigante blu
Rigel ha una magnitudine apparente m, = +0.13 e una parallasse
1, = 0.004”. Quale delle due stelle ¢, intrinsecamente, pit luminosa?
Qual é la piu lontana? (Gara interregionale, Categoria Senior, 2015)

Soluzione:

Affinché si possa determinare quale delle due stelle sia piu luminosa
intrinsecamente, & necessario ricorrere al calcolo delle magnitudini
assolute delle due stelle: possiamo calcolare la magnitudine assoluta di
una stella conoscendo la magnitudine apparente della stessa e la sua
parallasse tramite la relazione:

M =m+ 5+ 5logn

Ove la parallasse € espressa in arcosecondi.



Nel caso nostro:

M; =my + 5+ 5logmy = +0.42 + 5 + 5log0.005 =
= —6.08 (Betelgeuse)

M, =m, + 5+ 5logn, = +0.13 4+ 5 + 5l0g0.004 = —6.87 (Rigel)

Essendo la magnitudine assoluta di Rigel minore di quella di Betelgeuse,
allora Rigel & intrinsecamente pit luminosa di Betelgeuse. Possiamo gia da
guesto risultato comprendere quale stella sia pit distante delle due: infatti
Rigel é sia apparentemente sia assolutamente piu luminosa di Betelgeuse,
quindi & necessario che essa sia piu distante di Betelgeuse affinché cio si
verifichi. A riprova di cio, la parallasse di Rigel ¢ minore di quella di
Betelgeuse, essendo essa piu lontana. La distanza di Rigel in parsec é:

! = 250

Uy, N pe
Mentre quella di Betelgeuse é:

! = 200

TTq B pe

Dacuid, > d;.



Cosmologia elementare

Una galassia distante

Un team di scienziati osserva una nuova galassia e ne analizza lo spettro: la
riga H-alfa dell’idrogeno, che ha in laboratorio una lunghezza d’onda pari a
6562,81 A, ha nello spettro della galassia una lunghezza d’onda di 6569,33
A. Si determini la distanza della galassia.

Soluzione:

Per prima cosa calcoliamo il redshift della galassia:
AL Apss — gy 6569.33 — 6562.81

=7 Aiab eseaml D038k
Applichiamo la legge di Hubble-Lemaitre:
cz = Hyd
d= 2 299792.458k—m * M = 4.14 Mpc
H s 71.9

0

Alla ricerca della costante — Problema IAO 2018

Osservando 1’esplosione di una supernova in una lontana galassia, due
scienziati notano che la riga H-beta dell’idrogeno osservata nello spettro, ha
esattamente la stessa lunghezza d’onda della riga H-alfa osservata in
laboratorio. Tuttavia i due scienziati usano valori diversi per la costante di

Hubble. Usando valori che differiscono di A4H = H, — H,; = 14%’

ottengono valori diversi per la magnitudine assoluta della supernova al
massimo: M; = —19.02 e M, = —18.64. Trovare quanto valgono, per
ciascuno dei due scienziati, il redshift e la distanza della galassia. (XXIII
International Astronomy Olympiad — Colombo, Sri Lanka, Theoretical
Round, Group B, Exercise 1)

Soluzione:

Il redshift misurato dai due scienziati € lo stesso per entrambi: esso infatti
dipende dalle lunghezze d’onda osservate, che, secondo quanto affermato
nella traccia, sono le stesse per entrambi gli scienziati. La lunghezza d’onda



della riga H-alfa ¢ pari a 6563 A, mentre la lunghezza d’onda della riga H-
beta & pari a 4861 A. Il redshift, per definizione, & dunque pari a:

At—aifa—AH-
7 = H-alfa H-beta — 0235

/IH—beta

Conoscendo la relazione nota come “modulo di distanza” (relazione fra mag.
apparente e mag. assoluta), possiamo scrivere:

M1 = m1 + 5 - 5l0gd1
M, =m, +5 —>5logd,

Ma le due magnitudini apparenti dell’oggetto debbono necessariamente
coincidere, dal momento che esse sono dati puramente osservativi (non
derivano, cioe, da elaborazioni di dati precedenti): possiamo quindi sottrarre
membro a membro le due relazioni precedenti semplificando le due
magnitudini apparenti:

d2 d2 M, —M,
M; — M, = 5Slog (—) -»-—2=10 5 =0.839
di/ dy
Possiamo scrivere il seguente sistema:
cz cz H, =73.68
{dz = 0.839d, {H— = 0839~ {Hz = 1.19H, s * Mpc
_ — 2 1 _ —
Hp —H, =14 H, —H, = 14 Hy = Hy = 14 H, = 87.68

s * Mpc

Da cui, finalmente:

4 =2 299792458 5 20
= —= ) *
7 H, 76.68

= 1368.4 Mpc

cz
d, = = 299792.458 * 0.53/87.68 = 1196.7 Mpc
2



Miscellanea

Massa di una galassia

Una galassia & composta da stelle tutte simili al nostro Sole. Essa mostra uno
spostamento verso il rosso della riga Ha (A = 6562.81 A) di ampiezza pari a
AL = 1.5 A. Essa risulta inclinata rispetto alla perpendicolare alla linea di
vista di un angolo di 30° e si sa che il suo raggio € pari a 37000 anni luce. Nel
cielo appare come un oggetto di magnitudine superficiale
msup = 24.78 mag/ arcsec? . Quanto vale la massa della galassia?

Soluzione:

Ci viene fornita dalla traccia la magnitudine superficiale della galassia vista
dalla Terra: essa indica la magnitudine di una “porzione” della galassia di
superficie pari a 1 arcsec?. Di conseguenza, la magnitudine complessiva della
galassia dev’essere legata alla sua superficie angolare: allora dobbiamo
conoscere le dimensioni angolari della galassia; abbiamo le dimensioni
angolari, quindi dobbiamo ricavare la distanza della galassia:

Calcoliamo per prima cosa il redshift z:

A 15
1 6562.81

Con la legge di Hubble-Lemaitre ricaviamo la distanza:

=229-107%

Z =

czZ = Hod

g ¢z 3.00- 105-2.29-107%
T H, 71.9

Mpc = 0.954 Mpc =

= 3.11-10%anni luce

Adesso possiamo determinare le dimensioni apparenti della galassia perché
ne conosciamo la distanza: nel cielo essa ci appare come un’ellisse il cui
semiasse maggiore vale:

37000

m) = 0.682° = 2453.8 arcsec

R
a = arctan (E) = arctan(



. . 3 . . . N
Essendo il coseno di 30° uguale a ‘/2—— il semiasse minore varra:

b = arctan <@> = arctan (M> = 0.590° = 2122.6 arcsec
2d 2-3.11-10°
Calcoliamo la superficie di questa ellisse:
S =mab = m-2453.8-2122.6arcsec? = 1.63 - 107 arcsec?
A questo punto ricaviamo la magnitudine integrata apparente:
m = mg,, — 2.5log(S)
m = 24.78 — 2.5log(1.63 - 107) = 6,75
Abbiamo la distanza: troviamo la magnitudine assoluta:

M=m+5-5logd = 6.75+ 5 — 5log(0.954 * 10°) = —18.15

A questo punto troviamo il numero di “soli” contenuti nella galassia grazie
alla relazione che ci permette di ricavare la magnitudine integrata di un
oggetto (nel caso sia composto da componenti uguali):

M = —2.5log(N * 107 04Ms)

N = 10~04M-Ms) — 10—04(-18.15-4.83) —

= 1.56 - 10°stelle come il Sole!

Possiamo finalmente trovare la massa della galassia:

M, =156 -10°-1.99-10°°kg = 3.10 - 10*kg



Carburante stellare

Una stella di raggio R=705000 km presenta un picco d’emissione alla
lunghezza d’onda di 542 nm. Se essa ¢ costituita interamente da idrogeno, si
determini quanti atomi di idrogeno hanno reagito in un secondo nel nucleo
della stella, nella reazione di fusione termonucleare che produce elio.

Soluzione:

Dobbiamo innanzitutto determinare la luminosita della stella, che dipende dal
guadrato del raggio e dalla quarta potenza della temperatura; disponiamo del
raggio, ma dobbiamo ricavare la temperatura; notiamo come il problema
fornisca la lunghezza d’onda del picco d’emissione, che ¢ inversamente
proporzionale alla temperatura efficace secondo la Legge di Wien:

A+Topr = 2.898 mmK

2.898mm K

Topp=————  =15347K
eff T 542 -10-6mm

Adesso possiamo determinare la luminosita della stella (Legge di Stefan-
Boltzmann):

L = 4mR?0(T,p;)" = 4m (7.05 - 108)2 5.67 - 1078 (5347)* W =

= 2.89-10%°w

Questa ¢ I’energia che la stella irradia in un secondo, ma da dove deriva? Nel
nucleo, quattro protoni si fondono per formare un nucleo di elio: il nucleo di
elio che si forma, pero, non ha la stessa massa dei quattro protoni, bensi ha
una massa lievemente minore. La massa mancante (il difetto di massa) si &
trasformata in energia secondo la famosa relazione di Einstein

E = mc?

Se E=L, m sara uguale al difetto di massa complessivo per unita di tempo:

L 2.89-10%W kg
= =321-10°—



Essendo la massa di un nucleo di elio-4 pari a 6.645 * 10~2”kg, mentre la
massa del protone pari a 1.673 = 10™27kg, si ha che la massa di 4 protoni &
6.692 = 10~%7 kg e quindi il difetto di massa per ogni reazione é:

Am = 0.047 * 10727 kg

Dividendo questo valore per quello trovato sopra, otteniamo il numero di
reazioni che avvengono in un secondo nel nucleo della stella:

m 3.21-10°

— — — . 1037
N = Am = Wreaz. = 6.83-10°"reaz.

A ogni reazione corrispondono quattro atomi di idrogeno, quindi per trovare
la soluzione ci basta moltiplicare questo valore per 4:

N, = 4N = 2.73 - 1038atomi(!)

Una stella metallica

Che dimensioni dovrebbe avere una sfera metallica perfettamente riflettente
per essere visibile come un astro da Terra ad occhio nudo, quando essa si trova
in opposizione al Sole? (Questa sfera e posta in orbita circolare attorno alla
Terra con un periodo T = 2.766 ore).

Soluzione:

Innanzitutto ci serve conoscere il raggio orbitale della sfera, percio
applichiamo la Terza Legge di Keplero generalizzata:

T2 3 412
a3 GM

_2|GMT? _3[6.67-10-11-5.97 -10%4-9.92 - 107
“= a2z = 4(3.14)?

a =10005km




Sia Fs il flusso solare: esso investe la sfera e la quantita di energia intercettata
in un secondo (Lint) € direttamente proporzionale alla sezione della sfera:

Line = F; - mR?
La luce viene interamente riflessa, quindi
Lyif = Lint = K5~ mR?

Questa luminosita viene riflessa in tutte le direzioni, quindi tutti i punti che si
trovano alla medesima distanza dalla sfera riceveranno lo stesso flusso pari a:

_F,-mR* F;-R?
© 4nd? T 4d?
In particolare, per una localita posta sulla Terra:
I;; - R? Fs - R?

= = = 1.906 - 10~*F, R?
4(a —Rp)?  4(107 — 6.378-10°)2 $

Applichiamo la formula di Pogson comparando la sfera col Sole e tenendo
presente che la magnitudine della sfera dev’essere uguale a 6 (I’oggetto ¢
appena visibile ad occhio nudo):

F
m—mg = —2,5log (F)
N

6 +26.74 = —2.510g(1.906 - 10~ 1*R?)

1.906-10"1*R2 = 107131

10-131
R = —1.906_10_14m =2.04m

Pertanto la sfera deve avere un diametro di 4.08 metri.

N.B.: Nello svolgimento del problema si & usato lo stesso valore del flusso
solare per la Terra e per la sfera; in realta cio € un’approssimazione, perché le
distanze Terra-Sole e Sole-sfera sono diverse. Essendo perd il semiasse
dell’orbita della sfera trascurabile rispetto al semiasse della Terra, allora i due
flussi sono assai simili.



Un quasar doppio
E stato osservato un quasar doppio che si trova a grandissima distanza dalla
Terra. La particolarita di questo quasar € il moto di allontanamento delle due
componenti Q, e Q,. In particolare, Q, si allontana da Q. spostandosi, come
riportato in figura, dal punto A al punto B, con velocita relativistica “v” pari
al 75% della velocita della luce. Calcolare 1’intervallo
‘ di tempo At impiegato dal componente Q; a
v raggiungere il punto B e il corrispondente intervallo
lgal di tempo At’ misurato dagli astronomi sulla Terra
‘ (che giace sullo stesso piano della figura). Sulla base
, ! del risultato ottenuto, di fronte a quale sconvolgente
8% zal A conclusione si sono trovati gli astronomi, prima di
l l riuscire a spiegare correttamente il fenomeno?

(Finale Nazionale 2015 Categoria Junior)

A
Q17 a2

(verso la Terra)

Soluzione:

11 tratto AB ¢ I’ipotenusa del triangolo rettangolo ABA’ (vedi figura), quindi
esso vale (Teorema di Pitagora).

AB =/AA2 + A’'B2 =9 + 16 = 5a.L.
Esso viene quindi percorso nel tempo:

AB  5a.l.
At = —

> = 0.75¢ = 6.67 anni

Notiamo come non ci sia bisogno di conoscere il valore della velocita della
luce perché le distanze sono espresse in anni luce.
Adesso analizziamo il fenomeno come viene visto dalla Terra. Quando QL1 si
trova in A la luce da esso emessa impiega, per giungere in A’, un tempo pari
a

4a.l

c

Nel frattempo Q; si sposta e per arrivare in B impiega 6.67 anni. La luce che
emette in B non deve piu attraversare una distanza di 4 a.l., quindi i due
segnali luminosi arrivano a una “distanza” temporale:

At' = (6.67 — 4)anni = 2.67 anni

= 4 anni




Il risultato sconvolgente & che, siccome agli astronomi da Terra & sembrato
che Q; si spostasse lungo A’B, la sua velocita misurata da Terra risulta pari a:
A'B 3a.l.

- = = "

Apparentemente il quasar si € spostato con una velocita superiore a quella
della luce. Non € infatti raro osservare dei moti superluminali (cioé con
velocita superiore a quella della luce) in oggetti che si muovono con velocita
relativistiche; questa velocita &, tuttavia, sempre apparente.

Redshift e velocita radiali
Se una stella presenta un redshift z pari a 5.55«107%, quale sara il verso e il
valore della sua velocita radiale?

Soluzione:

Il redshift e positivo, quindi la stella si allontana da noi. La velocita radiale
della stella é data da:

km
v=cz=23-10%-555-10° = 16.7T

Redshift di un ammasso stellare

La lunghezza d’onda A’ di una delle righe piu evidenti della luce emessa dalle
galassie di una costellazione & 1.020 volte piu grande della corrispondente
lunghezza d’onda A di riferimento. Calcolare la velocita con cui I’ammasso si
sta allontanando dalla Terra e stimare la sua distanza.

Soluzione:

Il redshift é:
B AA B (1.020— 1A

7 7 = 0.020

V4



Pertanto:
km
v = 0.020c = 6000T

E legge di Hubble-Lemaitre:

v_6000 .
H- 719  °o>*MPC

Distanze di ammassi stellari

In una galassia, tutti gli ammassi globulari hanno un diametro pari a 50 anni
luce. Nelle fotografie si misura il diametro angolare di tre di questi ammassi.
I diametri risultano pari a 8°, 9°, 10°. Calcolare la distanza dei tre ammassi.

Soluzione:

Le dimensioni reali di un oggetto visto sotto un angolo a alla distanza d sono
date da:

D = 2d tan (%)

Da cui:
d; = b = >0 = 21486 i
1= a 01333 = anni luce
2tan| Ztan( > )

d b 19099 i

2= TN — anni luce

2 tan (7)
D

ds; = —an 17189 anni luce



Ingrandimenti di un telescopio (e non solo!)

Se si dispone di un telescopio di 30 cm di diametro e lunghezza focale di 2 m,
guali ingrandimenti saranno forniti da tre oculari di focale 25mm, 10 mm e
Smm? Se gli oculari hanno un campo apparente di 55°, quale sara I’angolo di
campo al telescopio? Calcolare pure la pupilla d’uscita.

Soluzione:

Calcoliamo I’ingrandimento:

L= F2000mm 80
YT FT 25mm T X
2000
12 = T = 200x
2000

Iy = —=— = 400x

Il campo del telescopio sara:

FoV,. 55° .
FoV, = i = % = 0.69
FoV, = = 0.28°
°Y2= %00

o

5
FoVy = — = 0.14°

400
La pupilla d’uscita:

300 375
P =55 =3.75mm

300 L5
P2 =550 = 1-5mm

300

= 0.75mm

P3=m



Telescopi e granuli solari

Calcolare I’apertura minima di un telescopio per poter riconoscere un granulo
solare ampio 700km.

Soluzione:

L’estensione angolare di questo granulo ¢ data da:

700

D
= 2arctan (—) = 2arctan [ ————
a arcan( ) arcan(2_149.6_106

=0.97"
7 )

Quindi, per la formula di Dawes:

D(mm) = 120/a" = 12.4cm

Telescopi per fotografare

Per realizzare una fotografia a vasto campo é stato necessario un tempo di
posa di 13 minuti a f/3 con sensibilita 800 1SO. Determinare il tempo
necessario per ottenere la stessa foto usando una sensibilita di 1000 ISO ed
un’apertura relativa di f/4,5. Trascurare le perdite di sensibilita dovute al
difetto di reciprocita delle pellicole.

Soluzione:

Il tempo di posa richiesto si ricava dalla formula:

_ fZ 51

T, =
S

Ty

T tempo, S sensibilita, f diaframma (apertura relativa)

_ 4.5%2 800

T2 = m 13 = 23.4 min



Telescopi e foto di stelle puntiformi

Determinare il tempo di posa massimo per ottenere stelle puntiformi senza
inseguimento siderale con un obiettivo di 50 mm (di focale F) puntato su una
zona di cielo avente declinazione media 45°. Il formato utilizzato e il
24x36mm.

Soluzione:

La formula che permette di ottenere stelle puntiformi é:
600

max = Fooos = 17secondi

Radiotelescopi
Un radiotelescopio ha apertura di 75 m. Determinare il limite di diffrazione
raggiungibile alla frequenza di osservazione di 410 MHz.

Soluzione:

La lunghezza d’onda ¢ data da:
c=A

c
A=—-=732cm
v

Il limite di diffrazione si ricava dalla formula di Rayleigh:

19—1'22’1—122 73'2—00119 d =0.68° =41’
= D = 1. 7500— . raa = V. =

Radiotelescopi 2.0
Un radiotelescopio ha un diametro di 25m. Calcolare il limite di diffrazione
alla lunghezza d’onda di osservazione di 21 cm.

Soluzione:

Per la formula di Rayleigh:

19—1'22'1—122 21 = 0.01rad = 0.59° = 35.2’
_D—.ZSOO—.Ta—.—.



Questioni di risoluzione
Un telescopio riflettore ha diametro 1.5 m. Calcolare il suo potere risolutivo
massimo alla lunghezza d’onda dell’idrogeno ionizzato H,=656.3nm.

Soluzione:
Ancora una volta:

1.222 656.3 x 107°
= = P

— ] _7 — n
15 53 107'rad = 0.11

Questioni di risoluzione

Consideriamo due stelle, la prima (S1) ha magnitudine apparente m;=11 e si
trova a una distanza L, dalla Terra; la seconda, S2, ha luminosita intrinseca
identica a S1, ma si trova a una distanza tripla rispetto a S1. Che magnitudine
apparente ha la stella S2? Se abbiamo a disposizione uno specchio di diametro
D, con cui si riesce a vedere a malapena S1, quanto deve essere il diametro
del secondo telescopio D, che permetta di vedere a malapena la stella S2?

Soluzione:

Siccome la luminosita intrinseca ¢ la stessa ma la distanza della seconda stella
e tripla, il flusso della seconda stella & uguale a un nono del flusso della prima.
Quindi, applicando la formula di Pogson:

F.
my; —m, = —2.5log (é) = —2.5log9 = —-2.39

m, = 11 + 2.39 = 13.39

Infine, poiché per osservare S2 dobbiamo essere in grado di rivelare il flusso
che ¢ 9 volte minore e che I’area di uno specchio aumenta con il quadrato del
raggio, il raggio dello specchio D, dev’essere 3 volte piu grande di quello di
D;.



Magnitudini limite
Calcolare la magnitudine limite visuale limite raggiungibile con un telescopio
di diametro D = 25cm.

Soluzione:

Applicando la formula per trovare la magnitudine limite (con il diametro
espresso in cm) troviamo:
m = 6.8+ 5logD = 6.8+ 5log25 =13.8

Magnitudini limite e apertura di un telescopio
Calcolare I’apertura necessaria per poter osservare stelle fino a una
magnitudine limite visuale di +16 con un telescopio.

Soluzione:

Applicando la formula precedente:

m = 6.8 + 5logD

m—6.8

D=10 5 =108 =69.2cm

“Pesiamo” una stella

In un sistema stellare, una stella ruota attorno ad un’altra su un’orbita circolare
con velocita 45 km/s. il suo periodo di rivoluzione e 300 giorni. Determinare
il raggio dell'orbita e la massa della stella centrale.

Soluzione:

La velocita orbitale e data da:



Da cui:

R vl 45000 2.592- 107

=—= = 1.856 - 101!
2 6.2831 m
Dalla Terza legge di Keplero:
4m?R3 30
M =———=5.632-10"kg

GT



Bignamino di Astronomia

SFERA E TRIGONOMETRIA
SFERICA

Premessa

Nella geometria pianai concetti base
sono il punto e la retta. Su una sfera, i
punti sono definiti nel senso usuale. Le
rette sono definite come cerchi massimi.
Data una sfera si definisce circonferenza
massima ogni circonferenza che si
ottiene intersecando la superficie sferica
con un piano passante per il centro della
sfera. L'equatore celeste & un circolo
massimo  mentre i paralleli  di
declinazione non lo sono. L'orizzonte
astronomico € un circolo massimo
mentre non lo sono gli almucantarat o
paralleli di altezza.

Elementi della sfera



http://www.vialattea.net/eratostene/index.php?option=com_content&view=article&id=382:orizzonte-astronomico&catid=40:glossario&Itemid=165

Sfera

Si chiama sfera la figura generata da un semicerchio di una rotazione
completa attorno al suo diametro. Definita come luogo geometrico ¢ il
luogo dei punti dello spazio la cui distanza dal centro & minore o uguale
al raggio.

Segmento sferico a due basi

Definiamo segmento sferico a due basi la parte di sfera compresa fra due
piani paralleli a e B secanti la sfera stessa

Calotta Sferica

Definiamo calotta sferica ognuna delle due parti in cui una superficie
sferica viene divisa da un piano secante a. La calotta & la porzione di
superficie sferica ottenuta per sezione con il piano a.

Fuso sferico

La parte di superficie sferica

|
limitata da due circonferenze [
massime, di sezione dei semipiani
a e B con la superficie sferica. '
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Spicchio sferico

Lo spicchio sferico ¢ il solido delimitato da due piano meridiani passanti per
uno stesso diametro e dalla posizione di superficie sferica (fuso sferico) a essi
corrispondente. Presi due punti distinti su
una sfera, per essi passa una ed una sola
circonferenza massima. Dati due punti A e
B, distinti, su una sfera, esiste una ed una
sola circonferenza massima che li contiene.
I due punti individuano su questa
circonferenza due archi, il minore di essi si
chiama distanza sferica e rappresenta una
geodetica. La geodetica & la linea che
realizza, su una data superficie, il minimo
percorso fra i due punti assegnati.

Nella geometria sferica la circonferenza massima gioca
lo stesso ruolo della retta nella geometria piana.



La lunghezza di questo arco é
proporzionale al raggio della sferae
all’angolo al centro AOB. Se AOB
€ espresso in radianti:

AB = 0Ax AOB



Triangolo sferico

Si definisce triangolo sferico la superficie sulla sfera limitata da tre archi di
circolo massimo passanti per tre punti detti vertici; tali punti non devono
appartenere allo stesso circolo massimo e gli archi non devono avere alcun
punto d'intersezione al di fuori dei vertici.

Lati del triangolo sferico

Sono le lunghezze degli archi AB, BC, CA che limitano la superficie. Tali
lati sono minori o uguali a 180.

Angoli del triangolo sferico

Sono gli angoli formati dai tre archi di
circolo massimo. La somma degli angoli
(interni) & maggiore di 2 angoli retti e
minore di 6 angoli retti

90 + 90 + 75 = 255°

180° < a+ B +y < 540°

90° [ Pertanto, la somma degli angoli & 180°
solo quando il triangolo € degenere,
ovvero quando i vertici del triangolo
sono situati sullo stesso circolo
massimo.

La differenza fra la somma dei tre angoli di un triangolo sferico e 1’angolo
piatto, si dice eccesso sferico:

e=a+p+y — 180°

Nel triangolo sferico sussistono relazioni fra le funzioni trigonometriche dei
lati e degli angoli: tali relazioni sono date dai teoremi di Eulero (teorema del
coseno per i triangoli sferici [l e teoremi dei seni M ), da cui derivano due
gruppi fondamentali di relazioni che prendono il nome di primo e secondo
gruppo di Gauss di cui ci occuperemo nella trattazione del triangolo di
posizione astronomico. L’applicazione dei triangoli sferici assume particolare
importanza in astronomia in quanto, come abbiamo visto nei sistemi di
riferimento, sulla sfera celeste si misurano solo distanze angolari.



Triangolo di posizione astronomico

Vertici del triangolo
Il triangolo astronomico o di posizione ha i vertici nell*astro, nello zenit e nel
polo celeste nord; il terzo vertice potrebbe essere anche l'altro polo, ma per
convenzione e preferibile usare quello nord in quanto semplifica le regole
algebriche per il calcolo delle lunghezze dei lati.

Lati del triangolo
I lati del triangolo hanno lunghezze comprese fra 0° e 180° definite come

seqgue:

Distanza polare p =90° - &
La distanza che I'astro ha dal
polo di riferimento (polo
celeste nord, per
convenzione). Considerando
la declinazione § positiva se
a Nord e negativa se Sud; la
distanza polare & p < 90° nel
primo caso e p > 90° nel
secondo.

Colatitudine c =90° - @

Meridiano
superiore

Polo Celeste
Sud

Zenith

colattudine=90-Lat
Polo Celeste
Nord

Latitudine

\
Nord

Coincide con la colatitudine, ossia il complemento della latitudine. Si
ricorda che I'elevazione dell'asse polare € esattamente pari alla
latitudine del luogo. La precedente convenzione per la declinazione
puo essere adottata anche per la latitudine per cui si ha ¢ < 90° per
latitudini nord e ¢ > 90° per quelle a sud.

Distanza zenitale z=90° - h

Coincide con la distanza zenitale z, ossia la distanza che l'astro ha
dallo zenit. Tale distanza & il complemento dell'altezza h (z = 90°-h).
Se l'astro & nell'emisfero visibile si ha h > 0° e z < 90°, per astri
nell'emisfero invisibile si ha h < 0°e z > 90°.



I tre angoli sono:

1) Angolo vertice nello Zenith, compreso tra meridiano e cerchio
verticale; la sua ampiezza dovrebbe corrispondere all'azimuth, ma in
guesto caso, poiche l'ampiezza degli angoli nei triangoli sferici é
sempre inferiore a 180°, prende nome di Angolo azimutale Z.

2) Angolo vertice nel Polo Celeste, compreso tra meridiano e cerchio
orario; la sua ampiezza corrisponderebbe all'angolo orario, ma in
questo caso, poiché l'ampiezza degli angoli nei triangoli sferici ¢
sempre inferiore a 180°, prende nome di Angolo al Polo P.

3) Angolo con vertice nell’oggetto A

B perunlato:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos (A)

] sin(a) _ sin(b) _ sin(c)
sin(4) - sin(B) - sin(C)

Attraverso le seguenti relazioni note come primo e secondo gruppo di Gauss
e possibile risolvere il triangolo astronomico.



Formule del Primo gruppo di Gauss

cos h cos A= cos ¢ sin § +sin ¢ cos § cos H

{ sinh = sin¢@sind + cos@cosécosH
cos h sin A =cos § sin H

Formule del Secondo gruppo di Gauss

sind = sin@ sinh — cos ¢ cos hcos A
{0055 cosH = sinh cosp + cosh seng cosA
cosé sinH = cosh sinA

Notiamo che nel triangolo di posizione sono contemporaneamente presenti,
per l'oggetto celeste osservato, le sue coordinate altazimutali (azimuth o
angolo zenitale e altezza o distanza zenitale) e quelle equatoriali orarie
(angolo orario o angolo al polo e declinazione o distanza polare). Queste
formule ci consentono il passaggio da coordinate altazimutali ad equatoriali
orarie e viceversa.

Queste ci consentono il passaggio da un sistema altazimutale ad equatoriale
sin § = sin @ cos z—cos @ sin z cos A

cos § cos H= cos ¢ cos z+ sin ¢ sin z cos A
cos 6 sin H= sin z sin A



Area della superficie della zona sferica

Anche qui la formula & molto semplice: ¢ la stessa che vale per la calotta
sferica

A =27nrh

zZonasferica

Da notare anche qua che nella formula
compare solamente il raggio r della sfera e
non intervengono i raggi ried r, delle
circonferenze di base della zona sferica.

Questa formula ¢ facile da dimostrare se consideriamo valida la formula della
calotta: pensiamo alla zona sferica come differenza fra due calotte sferiche;
allora basta fare la differenza fra le superfici delle calotte di base ri e rz;

Chiamato k il segmento prolungamento da h fino alla superficie sferica
avremo:

Area calotta con base raggio r1 = 2 w r (h+k)
Area calotta con base raggior,=2ark

Facciamo la differenza:
Area zona sferica = 2nr(h+ k) — 2nrk =

=2nwrh + 2nrk — 2nwrk = 2@rh

Come volevamo
dimostrare!!
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Le parti della sfera

Riportiamo in una tabella le caratteristiche delle parti in cui rimane divisa una
superficie sferica e una sfera di raggio R quando vengono sezionate con
opportuni piani, indicando anche le formule per il calcolo delle corrispondenti
superfici e volumi:

CARATTERISTICHE RAPPRESENTAZIONE SUPERFICIE VOLUME

Calotta sferica: ciascuna delle
due parti in cui un piano divide
la superficie sferica

Segmento sferico a una base:
ciascuna delle due parti in cui
un piano divide una sfera

s
V=—xh"(3R-h)
3

Zona sferica: parte della super-
ficie sferica delimitata da due
piani paralleli

Segmento sferico a due basi:
parte della sfera delimitata da
due piani paralleli

Settore sferico: parte di sfera S=aR(2h+r) Vi l)-R"h
generata dalla rotazione di un 0 3
settore circolare attorno al suo

asse di simmetria V

V= lxh(.r' + b) olrrh“
2 6

S =2Ra

con a ampiezza in

Fuso sferico: parte della superfi-
cie sferica delimitata da due se-
mipiani uscenti da un diametro

2 .,
V= —}-R o
radianti del diedro | @ in radianti
formato dai due
piani

Spicchio sferico: parte della sfe-
ra delimitata dagli stessi due
piani

................... L mmm i

; FONTE: ISTITUTO ITALIANO EDIZIONI ATLAS ;



Esercizi

Calcolo dell’altezza di un oggetto alla culminazione
superiore e inferiore

Gia conosciamo le formule che ci permettono di determinare I’altezza di un
astro sull’orizzonte nel caso di culminazione superiore ed inferiore: per
semplicita le riportiamo qui di seguito:

Culminazione La stella culmina a La stella culmina a
superiore sud dello zenit nord dello zenit
ALTEZZA h=90°-¢ + h=90°+¢ -8

Proviamo, attraverso le formule contenute nella parte teorica di trigonometria
sferica, a verificare queste relazioni:

Consideriamo la prima equazione del primo gruppo (vd. Primo Gruppo di
Gauss):

sin h = sin ¢ sin J + cos ¢ coso cos H
Se la stella culmina, vuol dire che essa passa al meridiano (o superiore 0

inferiore a seconda della culminazione).

CULMINAZIONE SUPERIORE:
Quando la Stella passa al meridiano superiore [’angolo orario H é = 0 il
cos0° =1, per cui si ha:

sin h = sin ¢ sin J + COS ¢ C0Sd

Questa equazione si risolve facilmente se si applicano le formule di
sottrazione del coseno:

cos (a - B) = cosacosp + sinasing
La nostra equazione puo essere scritta:

sin h =cos (¢ - 9)



L’ a della formula di sottrazione ¢ la latitudine e la  la declinazione.
Ma:

sin h=cos (90° -h)
Ed allora:
cos (90°-h) = cos (¢ - 9)
Questa & una equazione elementare in coseno che ha per soluzioni:

90°—h= + (¢ — b)

90°—h=+ (¢ — &)
h=190°— ¢ + &

90°—h=—(¢ — &)

h=90°+ ¢ — ¢
(Le relazioni sono due perché ognuna vale per un emisfero)

CULMINAZIONE INFERIORE:
Anche qui sappiamo che:

h= ¢ + 6§— 90°
sinh = sin@siné + cos @ cosé cos H
Alla culminazione inferiore ’angolo orario ¢ 12" quindi 180°:
cos 180° = —1
sinh = sin@ siné — cos ¢ cosé

Non possiamo applicare come prima a formula di addizione del coseno! E
quindi la riscriviamo:

sinh= — (—sin@siné + cos ¢ cosd)
Ricordando che:

cos (a + B) = cosacosB — sinasinf



Ed essendo:

sinh = cos(90° — h)
Possiamo scrivere:

cos (90°—h) = —cos(¢p + 6)
Essendo:
cosa = — cos(180° —a)
Allora:
cos (90°— h) = cos(180° — ¢ — 9)
90°—h = 180° — ¢ — &

h= ¢ + §— 90°
N.B.: Essendo il coseno di due angoli dello stesso valore assoluto ma di segno
opposto uguale, come fatto sopra anche la soluzione col segno negativo va

presa: quindi si ottengono anche qui due formule, che, come sopra, Si
riferiscono ciascuna a un emisfero.



Calcolare ’espressione che consente di determinare il
sorgere e il tramontare di un astro

Successivamente, determinare la differenza delle ore di luce ai solstizi a
Reggio Calabria — Latitudine p=38°6" Nord.

Per rispondere alla prima domanda dobbiamo determinare I’angolo orario:
applichiamo il (vd. teoria) Primo Gruppo di Gauss:

sinh = sin¢@sind + cos@cosHcosd
Isoliamo il cosH. Si trova:

sinh — singsind

cosH =

cos @ cos

E scriviamo ancora:

sinh sing siné
cosH = -
cos @ cos S cos @ cosd
Ed ancora:
sin h
cosH = ———— — tangp tané$
cos ¢ cos o

Essendo tana=sena/cosa.
Al momento del sorgere dell’astro h= 0, quindi:
cosH = —tangp tand
Poiché sin0°=0
Se ¢ nota 1’ascensione retta possiamo calcolare il tempo siderale:

T, = H + H=cos™! (6 sin tang tand
s = aconH =cos " ( cos g 058 ang tand )



Se conosciamo il valore del tempo siderale in una determinata ora di un
determinato giorno, possiamo anche trovare 1’istante di tempo che segna il
nostro orologio per il sorgere del Sole (per questi calcoli si vedano i problemi
precedenti sul tempo):

c= H+a

Una volta trovata 1’espressione dell’angolo orario, la seconda domanda si
. . . H
risolve facilmente tenendo conto che 1’angolo orario adesso ¢ 5

H
cosz = —tan@* tan

Il Sole ai solstizi ha una declinazione § = +23°27’ (21 giugno, solstizio
d’estate) e § = —23°27’ (21 dicembre, solstizio d’inverno).

Si trova che:

Cosg = —0.784 x 0.433 = —0.34
Percio:
H = 2cos 1(—0.34) = 219°46’ = 14 ore 39 minuti
(di piu lungo dell’anno)

Mentre il 21 dicembre:
H
cos - = (—0.784) * (—0.433) = 0.34
dal quale si ricava che:
H = cos™1(0.34) = 140°15’ = 9 ore 21 minuti

(di pitu corto dell’anno)

La differenza di ore ¢ AH = 14h 39m —9h 21m = 5 ore 18 minuti tra
inverno ed estate.



Calcolare I’altezza, I’ora e I’azimut

In un certo giorno, in cui é in vigore l’ora legale, in una citta, posta alla
longitudine di A = 10° 52" 59" E, e latitudine ¢ = 44° 38’ 45” N il Sole ha
una declinazione S0 = 10° 59’ 04”.Considerando trascurabile la
declinazione del Sole durante [’arco della giornata,

Calcolare:

1. [Daltezza massima raggiunta dal Sole in quella localita e ['ora del
transito in meridiano;

2. [orain cui, in tale giorno, il sole sorge e tramonta in quella Citta e
[’arco diurno,

3. [’azimut del sole nei momenti in cui sorge e tramonta.

Il Sole raggiunge la massima altezza hc sull’orizzonte (culmina) quando
transita per il meridiano locale dell’osservatore. Nel caso specifico avremo:

he =90° — (¢ — 0p) = 90° — ¢ + Sp =
= 90° — 44°.64583333 + 10°.98444444 = 56°.33861111
L’altezza massima del Sole, nel momento in cui transita al meridiano é:
he = 56°.33861111 = 56° 20’ 19”
Indichiamo adesso con A la longitudine espressa in ore e con AT la differenza
in ore del meridiano locale rispetto a GMT. Nel nostro caso essendo in vigore
I’ora legale, sara AT = 2" Le 12" locali corrispondono dunque a:

UT = 12h — 2

Per cui, I’ora locale del transito in meridiano del sole sara (scrivendo la
longitudine in notazione decimale):

10°. 8830555556 N

_ 2h —
15

Tc = 12h — A+ AT = 12" -

= 2h — 0.725537036h + 2h = 13.27446296 h



Il Sole culmina alle ore locali:
T, = 13h16m 28s.1
I due eventi del sorgere e tramontare si verificano quando il sole interseca
’orizzonte celeste dell’osservatore, € quindi la sua altezza h € nulla. In questo
caso, & possibile determinare i tempi (gli angoli orari Hs e Hr) e le direzioni
(Pazimut As e A1) delle due posizioni del sole sull’orizzonte e I’arco diurno:
AT = Hy — Hg
Che ci da la durata della permanenza del Sole.
Applichiamo le formule del Primo Gruppo di Gauss al triangolo sferico
precedentemente definito rispetto al lato “zenit — sole” ed all’angolo al vertice
con lo zenit.
sinh = sin @sind + cos ¢cos 6cos H
coshsinA = —cos 6sinH
coshcos A = cos ¢sin§ — sin ¢cos dcos H
Quando il sole sorge e/o tramonta, si ha h = 0 e quindi sin h = 0.
Dalla prima relazione precedentemente scritta segue dunque:
cosH = —tan ¢ tan dp
Dai dati del problema si ha:
@ = 44°38 45" N = 44°.64583333
dp = 10°59°04”.1 = 10°.98444444
Segue:

cos H = —tan(44°.64583333) tan(10°.98444444) =

= —0.191713689



H =cos™! (—0.191713689) = 101°.0528101 = + 6h.736854006

L’angolo orario H & negativo al sorgere perché deve arrivare in meridiano, e
positivo al tramonto perché ha superato il meridiano. Sara dunque:

Hg = —6.736854006 h
Hr = 6.736854006 h
Il Sole sorgera dunque alle ore:
Tg¢ = T + Hg = 13.27446296 h — 6.736854006 h =
= 6.537608954 h = 6h 32m 15s5.4
Lo stesso giorno il Sole tramontera alle ore:
Ty = T¢ + Hr = 13.27446296 h+ 6.736854006 h =
= 20.01131697 h = 20h 00m 40s.7
L’intervallo temporale durante il quale il sole restera sopra 1’orizzonte sara:
AT = Hry — Hg = 6.736854006 h + 6.736854006 h =
= 13.47370802 h = 13h 28m 25s5.4

Per ricavare 1’azimut del Sole nei momenti in cui sorge e tramonta, utilizziamo
la 32 delle formule di Gauss:

coshsinA = —cos 6sinH

Nel momento in cui il sole sorge e tramonta si ha h =0 e quindi cos h = 1, per
cui si ha, rispetto al punto Nord:

sindg = —cosdpsinHg =
= —0s(10°.98444444 ) sin(—6.736854006 h * 15) =

= 0.963469686



Ag =sin! (0.963469686) = 74°.46556891 = 74°27'56".1

sinAr = —cosdpsinHy =
= —co0s(10°.98444444 )sin(6.736854006 h * 15) =

= —0.963469686

AT =sin"! (—0.963469686) = — 74°.46556891 =

= (360° — 74°.46556891) = 285°.5344311 = 285°32’'4”



DISTANZA tra DUE STELLE

Regolo ha coordinate H = 27m 4s e declinazione 11° 52'5". Denebola ha
coordinate H = 22h 46m 36s e declinazione 14°27'33". Si determini la
loro distanza angolare.

Per calcolare la loro distanza consideriamo il triangolo sferico BPA. Dalla
figura si evince che:

PY = = Orizzonte
HZ2 H1
PB =90° -6,
PA =90° -6,
L’angolo al polo:
P=H,—H

Applichiamo il teorema del coseno o di Eulero:
c0SAB = cosPBcosPA + sinPB sinPA cosP
Sostituendo:
cosa = cos(90° — §;) cos(90° — §,) + sin(90° — §;) sin(90° — §,) cosP

cosa = siné; sind, + cosd,cosé, cos (H, — H;)



E svolgendo i calcoli:
cosa = sin(11.8681) sin(14.4592) +
+ c0s(11.8681) cos(14.4592) cos(25.1167) = 0.904

a = 24.58
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FORMULARIO

NOTA BENE:

La presente sezione & concepita
per aiutare il ripasso finale prima
della gara. Non devono essere
usate per sostituire lo studio piu
approfondito degli argomenti!

ASTRONOMIA SFERICA

TEOREMA dei SENI

! (TRIANGOLI PIANI)

- a b C

sina sinf siny

= 2R

In un triangolo qualsiasi, il rapporto tra un lato qualsiasi e il seno dell’angolo
opposto a tale lato si mantiene costante, ed &, in particolare, uguale al doppio
del raggio della circonferenza circoscrivibile al triangolo.



IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

TEOREMA del COSENO o teorema di CARNOT
(TRIANGOLI PIANI)
a’? = b? + c?> — 2bccosa
b? = a® + ¢* — 2ac cos fB
c? =a?+ b?—2abcosy

In un triangolo qualsiasi, il quadrato di un lato ¢ uguale alla somma dei
quadrati degli altri due lati diminuita del doppio prodotto di tali due lati e del
coseno dell’angolo fra essi compreso.

TEOREMA dei SENI

(TRIANGOLI SFERICI)

sina sinb sinc

sina sinf siny

Un triangolo sferico ¢ la parte di superficie

sferica delimitata da tre archi di cerchi

massimi che si intersecano. | lati di tali

triangoli non sono identificati per la loro

lunghezza lineare, ma tramite 1’angolo

c sotteso da essi rispetto al centro della sfera.

Il rapporto del seno di un lato qualsiasi di

tale triangolo e il seno dell’angolo opposto a tale lato si mantiene costante per
ogni lato scelto.



TEOREMA del COSENO
(TRIANGOLI SFERICI)

cosc = cosa cosb +sina sinbcosy
cosa = cosbcosc +sinbsinccosa

cosb =cosa cosc +sina sinc cosf

In un triangolo sferico, il coseno di un lato & uguale al prodotto dei coseni
degli altri due piu il prodotto dei seni degli altri due e del coseno dell’angolo
opposto al primo lato.

TRIANGOLO PARALLATTICO

Per triangolo parallattico s’intende il
triangolo sferico sulla volta celeste
formato dallo zenit Z, dal polo
celeste P e da una data stella S.

ZP =90°— ¢
PS =90°—-6
ZS =z
ZPS =H (H = angolo orario)
SZP =180°—A (A = azimut)

Attraverso i teoremi sui triangoli sferici, grazie alla costruzione del triangolo
parallattico e possibile trasformare le coordinate altazimutali in coordinate
equatoriali orarie/celesti.



(T

I Sole vero

medio invece

ET=T,—Ty oppure ET=T,—T,

rivoluzione terrestre, non si muove sull’Eclittica in maniera uniforme. 11 Sole

comporta uno sfasamento tra tempo vero e tempo medio, indicato
dall’equazione del tempo. (L’impiego di una delle due formule dipende dai
grafici forniti dall’almanacco o dal problema).

EQUAZIONE DEL TEMPO

tempo solare medio, T,, tempo solare vero)

(I’astro diurno), a causa della variabilita della velocita di

si muove sull’Equatore celeste in maniera uniforme. Cio

EQUA

ZIONE. DEL TEMPO

=
|=

7/ gy Wom 8

—

1

Ll

¥—FQUATIONE DEL TEMPO ——
| ™ L2
N

%@ |GEn | FEB [MAR [ APR

MAG] GIU | LUG[AGO | SET|0TT| Nov| DI

piano dell'Eclittica

’IIIIIIIIIIIIIIIIIIIII.

"~ Stella TPREC ~ 26 000 anni

~ polare

Per I’effetto gravitazionale combinato del Sole e della
Luna sulla Terra, 1’asse terrestre compie un moto
millenario che osservato dal Polo eclitticale Nord
appare svolgersi in senso orario, facendo si che I’asse
descriva un doppio cono. In conseguenza di cio, il
punto vernale si muove sull’Equatore celeste in senso
orario con periodo indicato. Cid comporta 1’anticipo

L TR progressivo degli Equinozi, muovendosi il punto

vernale incontro al Sole vero.

PRECESSIONE DEGLI EQUINOZI
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ABERRAZIONE della LUCE

Uperp
c

tana = a =

a = aberrazione

Vperp = componente della velocita
terrestre perpendicolare
alla luce incidente

= Quando i raggi di luce di una stella cadono sulla Terra, la loro direzione di
: provenienza appare lievemente deviata a causa del fatto che il Pianeta ha una
= sua velocita orbitale v. | due vettori velocita si combinano per dare un vettore
:risultante di poco inclinato rispetto alla direzione originale dei raggi. La

= deviazione ha periodicita annuale e semi-ampiezza di 20.5”.
.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

RIFRAZIONE ATMOSFERICA

all’orizzonte: Ah ~ 35’

per 0 <z < 70° Ah = 58,2" tan z

La rifrazione della luce proveniente da un astro dovuta alla presenza
dell’atmosfera terrestre determina un aumento pari a Ah dell’altezza
dell’astro, tanto maggiore quanto minore ¢ 1’altezza dell’astro. Fino a distanze
zenitali (z= 90°-h) di 70° ¢ possibile adoperare la seconda relazione. Oltre tale
valore la rifrazione cresce in maniera piuttosto irregolare, per raggiungere un
valore di 35’ in prossimita dell’orizzonte.



PARALLASSE ANNUA

o~ 1
") = 10

Lasteflasivede qui » o Lastelasivedequi A Causa del moto di rivoluzione della
i in dicembre Terra attorno al Sole, una stella
abbastanza vicina e affetta da uno
i Stellavicinn spostamento angolare apparente sulla
volta celeste, che raggiunge il suo
massimo dopo sei mesi. T ¢ 1’angolo di
parallasse, d la distanza della stella dalla
Terra. Se non si usano costanti di
proporzionalita, I’angolo ©t va espresso in
arcosecondi mentre d va espressa in
parsec.

Tale relazione é usata in astronomia per
la misura delle distanze di stelle vicine
(generalmente entro 100 pc).




MECCANICA CELESTE

LEGGE di GRAVITAZIONE UNIVERSALE
_ Gmym,
= —d2
Questa relazione esprime il modulo della forza gravitazionale che si esercita
tra due masse m, e m, puntiformi poste alla distanza reciproca d. La relazione
si mantiene uguale se le due masse hanno simmetria e distribuzione di densita

sferica. In quest’ultimo caso la distanza d ¢ la distanza tra i due centri delle
sfere. G & una costante universale e vale circa 6.674 * 10711 N m? kg2

La forza che il
corpo 1 esercita
sul corpo 2 ¢
diretta lungo la
congiungente 1-2
e ha verso rivolto
verso il corpo 1. E
uguale e opposta alla forza che il corpo 2 esercita sul corpo 1 (forza attrattiva).




ENERGIA POTENZIALE GRAVITAZIONALE
Gmy m,

d

L’energia potenziale gravitazionale di un corpo di massa m, che si trova nel
campo  gravitazionale
generato da un corpo di
massa m, a distanza d da
esso esprime il lavoro
che compirebbe la forza
di gravitazione se il
corpo di massa my
venisse allontanato dal
corpo di massa my
indefinitamente. Dunque, essa € nulla a distanza infinita. 1l segno negativo
deriva dalla proprieta della forza gravitazionale di essere attrattiva, che le

conferisce la tendenza a creare sistemi legati (vedi il Sistema Solare).
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

ENERGIA POTENZIALE GRAVITAZIONALE
Gm; m,

2a

La lettera a nella relazione scritta sopra rappresenta il semiasse maggiore
dell’orbita ellittica. L’energia su orbita ellittica ¢ negativa perché il sistema ¢
legato (vedi relazione piu avanti).

E=K+U=-
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ORBITE ELLITTICHE

PF1+PF2=2a
C
e =—
a

c? + b? = a?

d, =a(l+e)

d, =a(l—e)

e—M e = 1—(2)2

" dgtdp a

S = mab

e = eccentricita

a = semiasse maggiore

b = semiasse minore

¢ = semidistanza focale

d, = distanza all’afelio

d,, =distanza al perielio
F,, F, = fuochi

P = punto generico sull’ellisse

S = superficie dell’ellisse
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEETSN




SECONDA E TERZA LEGGE DI KEPLERO

2% legge:

Vadgq = Vpdy

3%legge:
T_z — | = 4—7'52
a3 G(M + m)
se M > mallora k = 4_712
GM

Un sistema formato da due corpi sottoposti esclusivamente alla mutua
attrazione gravitazionale € un sistema isolato: in questo sistema si conserva il
momento angolare rispetto a un polo qualsiasi. La seconda legge di Keplero
€ una conseguenza di questa conservazione. Il raggio vettore spazza aree
uguali in tempi uguali.

La terza legge di Keplero afferma che i quadrati dei periodi orbitali sono
proporzionali ai cubi dei semiassi maggiori per ciascun pianeta che orbita
attorno alla medesima stella. In realta questa & una legge approssimata che
vale solo se le masse dei pianeti sono molto piu piccole della massa
dell’oggetto centrale. Altrimenti a seconda del pianeta preso in
considerazione k cambia.

Nelle formule:
T = periodo orbitale v, = velocita al perielio
a = semiasse maggiore d,, = distanza al perielio
Vg = velocita all’afelio M = massa oggetto centrale
d, = distanza all’afelio m = massa pianeta

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII



CONSERVAZIONE DEL’ENERGIA (!!!) E
RELAZIONE ORBITE — ENERGIA

E =K + U = costante
E <0 o orbite elittiche
E =0 o orbite paraboliche

E > 0 e orbite iperboliche

Il campo gravitazionale & conservativo,

ellisse dunque I’energia meccanica di un corpo
sottoposto esclusivamente alla forza di
gravita si conserva. La forma delle orbite
per un sistema a due corpi dipende dal
valore dell’energia meccanica; le orbite
Sono curve coniche.

parabola




PERIODO SINODICO

1 ‘1 1
S P T
Il periodo sinodico S ¢
I’intervallo di tempo tra due
congiunzioni consecutive di
un pianeta con il Sole quando
osservato da un altro pianeta.
P ¢ il periodo siderale del
pianeta, mentre T & il periodo

siderale del pianeta da cui si
osserva la congiunzione.

Se il pianeta osservato € esterno:

1 1 1

S T P
Se invece € interno:

1 1 1

S P T



VELOCITA’ ORBITALI

GM
Veire = |
circ R
2GM 2 1
Uparab = "R Venittica = |GM (; - a)
Dall’ultima relazione:
GM 1+ e
Uperielio = ( )
a \1—e

GM [1—e
vugein = | (72)

Veire = velocita su orbita circolare
a = distanza r dal centro attrattore
Vparap = V.SU orbita parabolica

e = eccentricita

Venittica = velocita su orbita ellittica di semiasse a

Le presenti velocita sono ricavate dalla legge di conservazione dell’energia
meccanica



TELESCOPI

POTERE RISOLUTIVO

—122/1
a=1. D

Il potere risolutivo e la minima
distanza angolare tra due sorgenti
di luce che possono essere viste
separate (criterio di Rayleigh).
Nella determinazione del potere
risolutivo interviene 1’apertura
dello strumento e non
I’ingrandimento e il risultato della
formula riportata € in radianti.
Nella formula:

Disco di Airy

@@

A

A=lunghezza d’onda osservata D=diametro dell’obiettivo
FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESR

.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:
. INGRANDIMENTO DI UN TELESCOPIO .
u |
. F .
[ ] I - = |
|

: f :
: Dove F=focale dell’obiettivo e f=focale dell’oculare :
| |
: L’ingrandimento ¢ una grandezza ]
= adimensionale (rapporto di due :
® grandezze che in questo caso m
| . . . - ]
= hanno le dimensioni di una -
: lunghezza) che quantifica la =
= capacita di un sistema ottico di far :
: apparire di dimensioni maggiori un certo oggetto lontano. :



ASTROFISICA STELLARE

LEGGE DI STEFAN-BOLTZMANN

L = 4nR?0T*

L’energia erogata per unita di superficie e tempo € proporzionale alla quarta
potenza della temperatura (legge di Stefan-Boltzman). Per una stella
(approssimata sferica e considerata un corpo nero per poter applicare questa
formula), & possibile calcolare la sua luminosita moltiplicando la sua
superficie per la costante di Stefan e la sua temperatura alla quarta. La

costante vale ¢ = 5.67 * 10" 8 W m—2K~*

LEGGE DI PLANCK

La legge di Planck lega I’energia del fotone alla sua frequenza. Infatti, la

radiazione elettromagnetica
pud essere immaginata
come un insieme di
“pacchetti di energia” a cui
si da il nome di fotoni.
Grazie ad essi, puo eccitare
un elettrone in un atomo
cedendo ad esso la sua
energia. In formula v indica
la frequenza del fotonee h €
la costante di Planck che
vale h = 6.63 x 10734 x s

E = hv

Assorbimento del fotone

livelli energetici

fotone
elettrone
- —

WWW. ANDREAMININLCOM

livello energetico
pil esterno



LEGGE DELLO SPOSTAMENTO DI WIEN

La lunghezza d’onda massima di uno
spettro di corpo nero & inversamente
proporzionale alla temperatura assoluta

m) ‘ La costante b (costante di Wien) vale circa
2.898 x 103 m=K

FEEEEESEEEEEEEEEEEEEEESRN
° A T T T
d IS EEEEEEEEEEEEEEERN

FORMULA DI POGSON

F1
m; —m, = —2.5log (F—)
2

m—M = 5logd — 5
Dove:
my., = magnitudine apparente
M = magnitudine assoluta
m = magnitudine apparente
d = distanza della stella

Fi., = flusso delle stelle

g EEEEEEEEFEEEEEEEEEEEEEEEEEEEEEN
d I EEEEEEEEEEEEEEEEEEEEEEEEEESR



CLASSIFICAZIONE SPETTRALE (1)

La prima classificazione stellare in assoluto fu eseguita nel 1868 da Padre
Secchi, direttore dell’osservatorio del Collegio Romano, che raggruppo le
stelle in 4 classi:

- Bianche e rosse
Bianco-azzurre
Gialle

Arancioni e rosse

Questa catalogazione fu poi trovata imprecisa e venne rifatta da un team di
donne a capo del quale vi era Wilhelmina Fleming. Le stelle vennero
classificate in 7 classi in base al loro spettro e alla loro temperatura
superficiale. Le 7 classi sono indicate con le lettere:

O B A F G K M

E sono divise in sottoclassi, contrassegnate da un numero posto a fianco alla
lettera

Per ricordare le lettere ¢ stata inventata la seguente filastrocca:

Oh Be A Fine Girl and Kiss Me

Ultimamente sono state inserite le classi R, N ed S (che possono essere
ricordate con I’aggiunta delle parole Right Now Smack alla filastrocca
precedente)



:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.
- CLASSIFICAZIONE SPETTRALE (2) -
- .
: Il secondo metodo per classificare le stelle (che venne chiamato :
= Classificazione MK) & in base alla loro luminosita. Con questo metodo si capi =
: che la luminosita di una stella dipende dalla sua temperatura superficiale e :
= dalla sua dimensione. Le classi di luminosita sono: :
||

- 0 Ipergiganti .
" I Supergiganti .
. ] Giganti luminose .
. Il Giganti normali .
. vV Subgiganti .
- V Stelle di sequenza principale .
- Vi Subnane =
. VII Nane bianche -
- |
- | |
: Il Sole ¢ una stella G2V. L’indicazione della temperatura ¢ affidata ai primi :
m due caratteri (G2), mentre 1’altro parametro riguarda le dimensioni (V). :

“LIMITI STELLARI”

Limite di Chandrasekhar: M = 1.4Mq;,
Limite TOV: 1.5 — 3 Mg,

Il limite di Chandrasekhar, 0 massa di Chandrasekhar, € il limite superiore
che puo raggiungere la massa di una nana bianca (altrimenti sarebbe una stella
di neutroni). Il limite TOV (dalle iniziali dei fisici Tolman-Oppenheimer-

Volkoff) indica il “confine” tra una stella di neutroni € un buco nero.
‘IIIIIIIIIIIIIlIlIIIIIIIIIIIIIIIIIIIIIII



RAGGIO DI SCHWARZSCHILD

Il raggio di Schwarzschild € un punto di non ritorno, che prende il home
dall’astrofisico tedesco Karl Schwarzschild. Quando una stella collassa nel
caso che le sue dimensioni scendano al di sotto del raggio di Schwarzschild
essa diventa un buco nero (cioé un oggetto con una gravita tale da non lasciare

sfuggire nemmeno la luce).

_26M
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DATI UTILI del SOLE

Massa:
Luminosita:
Magnitudine assoluta:

Costante solare:

Temperatura:
Raggio equatoriale:

Periodo di rotazione:

ms = 1.99 x 103%g
Ls = 3.85 10261/

Mg = 4.83 mag
K=—_=1368—

4TtUA m
T, = 5778 K

Rg = 6.96 * 108m

P, = 25 giorni



LEGGE di HUBBLE-LEMAITRE
v, = Hd

Per z molto piccoli:

v, = CZ

La legge di Hubble (o legge di Hubble-Lemaitre) afferma che esiste una

A

Asse
delle
di allg

v

velocita
ntanamento

Distanza delle stelle dalla Terra

Y

relazione lineare tra lo
spostamento verso il
rosso  della  luce
emessa dalle galassie e
la loro distanza. Tanto
maggiore ¢ la distanza
della galassia e tanto
maggiore sara il suo
spostamento verso il
rosso. Nella formula,
v, € lavelocita radiale,

d la distanza, c la velocita della luce e H ¢ la costante di Hubble (il cui valore
non & ben definito, ma che assumiamo in questo Bignamino pari a
65.12 kms~*Mpc~1)



PER APPROFONDIRE...

EFFETTO DOPPLER

In generale I’effetto Doppler si verifica ogni qual volta si misura una
variazione, rispetto al valore iniziale, della frequenza e della lunghezza d'onda
percepita da un osservatore raggiunto da un'onda emessa da una sorgente che
si trova in movimento rispetto all'osservatore stesso o viceversa.

Bisogna specificare che esiste una

radicale differenza tra il fenomeno di cui

((((, N stiamo parlando relativo alle onde

n Q =1 luminose e I’effetto Doppler riferito alle
o——eo- onde acustiche. La differenza € insita

- nella diversita di tipologie di onde. Le

onde acustiche (longitudinali)

necessitano di un mezzo per propagarsi.
)> Questo mezzo (I’aria, per esempio)
GE-E—-' n costituisce un sistema di riferimento
' privilegiato rispetto al quale il mezzo

risulta fisso.

C'e una differenza fisica tra il caso in cui l'osservatore & fermo e la sorgente
in moto, e quello in cui la sorgente € a riposo e l'osservatore in moto. Se la
sorgente S ed il rilevatore sono in avvicinamento lungo la stessa retta, la
frequenza che 1’osservatore (il rilevatore) percepisce € data dalla formula:

147
V=V Vonda
= —1_ Vs

Vonda

Se il rilevatore e la sorgente si stanno allontanando, la frequenza percepita &
data da:

Vr
1_
r— Vonda X : ,
V=V—7y (v e la frequenza propria dell'onda)
1+




La luce ¢ un’onda elettromagnetica. Queste sono onde trasversali € non
necessitano di un mezzo per propagarsi (caro vecchio etere addio!) ed ancora,
mentre per le onde acustiche la velocita di propagazione dell’onda dipende

dalla velocita della
sorgente, nel caso
della luce la velocita
dell’onda ¢ sempre la
stessa  per  ogni
osservatore inerziale,
indipendentemente

dal fatto che Ila
sorgente siafermaoin

B . Lunghezza d'onda
Componente Direzone della
elettnca propagazone .

/\'\ :
Componente § A - .

magnetica

\»

moto. Non essendo possibile capire se a muoversi sia la sorgente o
I’osservatore, si parla di velocita relativa osservatore-sorgente. E nella
trattazione relativistica dell’effetto Doppler occorre considerare I’effetto della
dilatazione del tempo dovuta al movimento.

Se la sorgente S ed il rilevatore R sono in allontanamento si ha:

1+ p

T

Se sono in avvicinamento si ha:

Con:

1-p
=t Te

B =

al<

Poiché la frequenza é data da:

~| e



Invertendo le precedenti formule si ha:

1- B
VR=Vs |T— con S e R in allontanamento
1+4
1+ B o
Vg = Vg ﬁ con S e R in avvicinamento

Lo spettro emesso dalle stelle & a righe di assorbimento, e analizzandolo si
pud notare che esse si
trovano  spesso  in
posizioni diverse
rispetto allo spettro di
riferimento misurato in
laboratorio. Gli estremi
dello spettro visibile
sono il blu (frequenze
maggiori) e il rosso
(frequenze minori).

L’effetto Doppler viene chiamato in astronomia “spostamento verso il rosso”

se lo spettro appare spostato su lunghezze d’onda maggiori, e “spostamento

verso il blu” se spostato su lunghezze d’onda minori.

L’effetto Doppler in astrofisica viene utilizzato per misurare la velocita con
cui le stelle e le galassie si stanno avvicinando o allontanando da noi, per
misurare la loro velocita di rotazione, per scoprire se una stella che ci appare
singola ¢ binaria con componenti molto vicine tra loro. In astronomia I’effetto
Doppler si applica anche per calcolare 1’espansione cosmologica
dell’universo.



SPOSTAMENTO VERSO IL ROSSO (REDSHIFT)

AOSS@TVClta— Alaboratorio

Z =
/’llaboratorio

Nel caso di redshift z>0

Se la sorgente si allontana dall'osservatore con velocita v, e questa velocita e
molto piu piccola della velocita della luce c, allora lo spostamento verso il
rosso € approssimativamente:

zZ = —
Cc

Altrimenti bisogna considerare il fattore relativistico:

1+ B

zZ= |/ —

1-p

L'approssimazione del redshift come effetto Doppler € valida solo se z «< 1

REDSHIFT COSMOLOGICO

Il redshift cosmologico € lo spostamento relativo in frequenza di un‘onda
elettromagnetica dovuto all'espansione dell'universo. Si spiega ipotizzando
che le lunghezze d'onda varino allo stesso modo delle distanze per effetto
dell'espansione dell'universo. La lunghezza d'onda & proporzionale al fattore
di scala dell'universo.



REDSHIFT GRAVITAZIONALE

Un fotone, emesso da una sorgente di campo gravitazionale, perde energia e
quindi presenta uno spostamento verso il rosso legato all’intensita del campo
misurata nel punto in cui si trova il fotone. L’energia di un fotone che si
muove ad una distanza r nel campo gravitazionale di una stella di grande
massa avra una energia uguale alla differenza tra quella iniziale e quella
dissipata nel campo gravitazionale.

E' = E - U(Tfotone)
E' =hv
E = hv

Da E = mc?:

Per cui:

GMhv

U(rfotone) = 2



hv'’

GM
(1 )
rc

Da cui:

GM
VvV = v (1 ——2>
rCc

Quando la distanza r dal centro di massa della massa gravitante &
sufficientemente grande rispetto al raggio di Schwarzschild:

GM

z (gravitazionale) = —=
(9 ) 2

Piu in generale:




TERMODINAMICA ed EFFETTO DOPPLER

La luce emessa dalla fotosfera di una stella, prima di propagarsi nello spazio
circostante, deve attraversare I’atmosfera stellare. Questo strato ¢ composto
da un gas di atomi e/o molecole, generalmente piu freddo della fotosfera, in
grado di assorbire specifiche frequenze a seconda della natura della particella.

Gli atomi, oltre che assorbire la radiazione, possono riemetterla. In questo
caso non si osserveranno righe di assorbimento ma righe in emissione.

Spettro di emissione del sodio

400 nm Spettro di assorbimento del sodio 750 nm

Questa agitazione termica comporta dei movimenti in avvicinamento ed
allontanamento rispetto all’osservatore e quindi I’effetto Doppler si manifesta
anche a livello microscopico in una nube di particelle in agitazione termica.
Se il gas si trova in equilibrio termico, la distribuzione delle velocita di queste
particelle segue quella di Maxwell-Boltzmann ed il valore piu probabile &
dato da:

2KT

Dove: m = massa della particella

Sappiamo che:
v
Aoss - Alab ( 1 i;)

AL = Aoss' Alab



A= Agp (1 i%)'/llab

AL = Aigp (1 i%'l)

AA
Alab

=+

al<

sev « ¢ alloraz z%

AN Uu
= 7 = —
Mab c
1 [2KT
zZ == [—
C m
AA 1 |2KT
A c m

Poiché le particelle si allontanano e si avvicinano, la riga si dilata sia verso
lunghezze d’onda a destra che a sinistra. Allora alla formula precedente
dobbiamo aggiungere un fattore 2:

A= 22 |22
C

Dalla stima della dilatazione della riga si pud pervenire alla temperatura.



TERMODINAMICA

EQUAZIONE DI STATO (GAS PERFETTO)

pV = nRT
Pressione

Dove:
p = pressione b PV = nRT
V = volume ?}\

N T A

_ ; ; N
n = numero di moli UMero] B Volume
di moli

R = costante

T = temperatura Temperatura



ENERGIA INTERNA

L'energia interna U di un gas é data dalla somma di tutte le energie cinetiche
delle particelle, in un gas perfetto si considera nulla I'energia potenziale e
I'energia cinetica € solo energia di traslazione.

1
Ky, - Equm

_ |3RT

K. —m—
=2M™ M

1 3RT
sz Em

mN,
K 13RT
™= 2 N,

L’energia traslazionale ¢ sempre uguale a:

Kpe S kT
m= 2

indipendentemente della massa o dalla natura della molecola.



TEOREMA dell’EQUIPARTIZIONE
del’ENERGIA

In base al teorema dell’equipartizione dell’energia, in generale, I’energia
cinetica media di una singola molecola di un gas perfetto e data da:

_f
<€>—EkT

Dove f indica il numero di gradi di liberta e k la costante di Boltzmann. Per
grado di liberta si intende un modo in cui una molecola puo assorbire energia.
Una molecola di un gas monoatomico pud essere schematizzata come un
punto materiale, quindi ha 3 gradi di libertd. Una molecola pitu complessa ha
pit gradi di liberta, in quanto possiede altri tipi di energia dovuti alla
vibrazione e al movimento di rotazione.

Per una molecola di gas monoatomico:

<e>= kT
Per n moli:
U = ENkT = ENET = EnRT
2 2N, 2
Per un gas biatomico:
5
U = EnRT

Una molecola biatomica ha 5 gradi di liberta (3 traslazionali e 2 rotazionali).
Ad alte temperature, diventano rilevanti anche i due gradi di liberta
vibrazionali di una molecola di tale genere: essi portano il numero
complessivoa 7.

All’aumentare del numero di atomi della molecola (Ng¢om; = 3, COMe per
esempio C0,), il numero di gradi di liberta vibrazionali indipendenti aumenta
e dipende anche dalla geometria della molecola. Bisognera di volta in volta
considerare tali nuovi termini per determinare correttamente 1’energia interna
del gas.



Bignamino di Astronomia



APPROFONDIMENTI

Vettori e operazioni tra vettori

Prodotto scalare e vettoriale

In Fisica molte grandezze hanno carattere vettoriale, e tali vettori sono
tipicamente orientati nello spazio tridimensionale. In tale spazio, stabilito un
sistema di riferimento cartesiano ortogonale, ogni punto € identificato
univocamente da tre numeri reali (una terna di numeri): le coordinate del
punto (generalmente indicate con ascissa, ordinata e quota: X, y, z).

L’insieme di tutte le terne ordinate di numeri reali, cio¢ 1’insieme che ha per
elementi gruppi di tre numeri reali, che differiscono tra loro anche per 1’ordine
con cui tali numeri si presentano in sequenza (ciog, per esempio, (1,2,3) e
(2,1,3) sono due elementi diversi), prende il nome di R3, ove il simbolo
R rappresenta 1’insieme dei numeri reali. Quindi (il simbolo := si legge “si
definisce come™):

R3:={(x,y,2): x,¥,z € R}

In Fisica i vettori sono generalmente applicati in un punto: se io spingo una
porta con un dito per aprirla, sto applicando una forza in un punto ben preciso
dello spazio; in algebra spesso si considerano vettori applicati nell origine:
molte operazioni algebriche che coinvolgono i vettori non dipendono infatti
da dove sono applicati.

Facciamo una riflessione: se un’estremita del vettore (la coda) si trova
nell’origine, allora per identificare completamente il vettore considerato basta
conoscere le coordinate nello spazio della punta. Ma tali coordinate sono un
elemento di R3, quindi possiamo identificare un vettore applicato nell’origine
con un elemento di R3 (cioé una terna di numeri reali). Possiamo quindi

scrivere, per esempio:
L, (1 2 4)
EAVIEY

Intendendo il vettore che ha punto di applicazione nell’origine e componenti
X, Y, Z rispettivamente paria %2, 2/3 e 4.



Tenendo presente questa riflessione, definiamo le prime e piu elementari
operazioni tra vettori.

Somma di due vettori (ma anche differenza:
V= (vx,vy,vz) U= (U, Uy, Uy)

v+U= (vxiux,vyiuy,vziuz)

Prodotto per uno scalare k € R:

U = (vy, vy, ;)

kv := (kvy, kvy, kv,)

Forti di queste considerazioni, introduciamo il prodotto scalare:

IL PRODOTTO SCALARE

Per prodotto scalare qui intenderemo il solo prodotto euclideo: il “mondo dei
prodotti scalari” ¢ infatti molto vasto, ma parlarne in generale non ¢
I’obiettivo di questo testo; ci limiteremo a parlarne in maniera estremamente
sintetica, dando le informazioni essenziali che possono servire come
prerequisito per gli argomenti successivi.



Dati i due vettori ¥ = (v, vy, v,;) € U = (uy, uy,u,), il loro prodotto scalare
euclideo & un numero reale cosi definito:

U * U = vlly + Vyly + VU,

Quindi ¥ x1i € R enonaR3!I)

Esempio: v = (1,2,3) ,u = (3,2,1)

Vxti=1%34+2%x2+3x1=3+4+3=10

Notiamo dalla definizione come il prodotto scalare sia commutativo (v * i =
u * ¥) e sia anche distributivo (sia a destra sia a sinistra), cioé

Vx(U+W)=0xU+v*wW={U+W)*D

Il modulo (anche norma) di un vettore e definito come
|V]:= JU*D = /v§+v§+vzz

Dato un vettore ¥, definiamo il corrispondente versore ¥:

|tu

U=

<

Si tratta di un vettore con stessa direzione e verso di v, ma con modulo
unitario (cioé uguale a 1): provate a verificarlo applicando le definizioni.

I versori con punto di applicazione nell’origine e diretti lungo 1’asse delle x,

y, z (verso valori di ascissa, ordinata e quota positivi) sono denotati con

—~

simboli piuttosto diffusi, rispettivamente i, 7, k.
Quindi:
i=(1,00),7=(010)ek=(00,1)



Ogni vettore dello spazio puo essere scritto per mezzo di questi versori. In
generale:

U= (vx, vy, vz) si puo scrivere cosi: ¥ = v, 1+ v, j + v, k.

Questa proprieta si esprime dicendo che i, j, k generano lo spazio.

Si dicono ortogonali (perpendicolari) due vettori il cui prodotto scalare e
nullo. Potete verificare tramite questa definizione come i versori i, j, k sono
perpendicolari tra loro.

Due vettori e w € R3 si dicono paralleli se esiste un numero u € R tale
che

- —
V=Uuw



Si pud dimostrare che, detto a 1’angolo tra i due vettori v e w, il loro prodotto
scalare e anche uguale a:

- —

U x W = |V||W]| cos(a)

Relazione con cui forse sarete familiari, che mostra una proprieta importante
di tale prodotto: esso non dipende dal sistema di riferimento scelto (norme e
angolo sono indipendenti dal sistema scelto).

Piu avanti, per semplicita, ci riferiremo alla norma di un vettore indicandola
tramite il simbolo del vettore non sovrastato dalla freccia.

IL PRODOTTO VETTORIALE

Definiamo prima formalmente il prodotto vettoriale tra due vettori in R3, e
poi diamo una relazione piu semplice con cui forse voi sarete familiari:

Dati i due vettori ¥ = (vy,1),v,) e W = (wy,wy,w,), il loro prodotto
vettoriale corrisponde al seguente vettore avente componenti cosi definite:

- el .o—
UXW = (VW — Wy, —UxWy + UzWy, UxWy — UyWy)
Quindi v x w € R3l!

Riprendiamo i vettori del paragrafo precedente ed eseguiamone il loro
prodotto vettoriale:

B =(1,23),4 = (321
Pxi=(2-1-2-3,-1-143:3,1-2—2-3) = (-4,8,—4)

Adesso calcoliamo:
uxv=2-3-2-1,-3-3+1:1,3:2—-2-1)=(4,-8,4) =

= —(Ux1U)



Sin da ora, quindi, notiamo come il prodotto vettoriale non gode della
proprieta commutativa, bensi della proprieta anticommutativa: il prodotto
vettoriale tra due vettori € uguale al vettore opposto al prodotto vettoriale tra
i due vettori il cui ordine & commutato: abbiamo appena mostrato tale
proprieta attraverso un esempio piu facile da comprendere, piuttosto che
svolgere i calcoli letterali piu laboriosi.

Calcoliamo adesso il prodotto scalare tra v x u e ciascuno dei due vettori v e
U: ci accorgeremo di un’altra proprieta interessante:

(1,2,3) x (—4,8,—4) = —4+16—-12=0
(3,2,1) % (—4,8,—4) = —12+16—-4=0

Il prodotto scalare del vettore risultante dal prodotto vettoriale e ciascuno dei
due vettori di partenza sono nulli: cio vuol dire che il vettore risultante &
ortogonale (perpendicolare) a ciascuno dei due vettori (controllare la
definizione al paragrafo precedente)!

Si pud dimostrare abbastanza laboriosamente attraverso la definizione che,
indicando con a I’angolo compreso fra i due vettori, il modulo del vettore
risultante dal prodotto vettoriale tra due vettori u e v & pari a:

¥ x d| = |9]]u] sin(a)

L’espressione scritta a destra dell’uguale ¢ esattamente pari all’area del
parallelogramma che ha per lati i due vettori v e u.

Quindi sappiamo che il risultato del prodotto vettoriale tra due vettori & un
vettore perpendicolare ai primi due e con modulo uguale all’area del
parallelogramma che ha per lati i due vettori. Ma come determinarne il verso
in maniera rapida? Si fa ricorso alla cosiddetta regola della mano destra.

Supponete di voler determinare
il verso di vxu : ponete il
pollice della mano destra in
direzione del primo vettore, e
dirigete le dita restanti in
. direzione del secondo vettore: il
> vettore risultante uscira dal
palmo della mano. Ricordatevi
che la regola cosi enunciata vale
solo per la mano destra!!!




Sono frequenti in Fisica i cosiddetti “tripli prodotti vettoriali”, cio¢ scritture
siffatte:

ax(p x &
Unaregola, facile da memorizzare per via del suo nome, permette di calcolare

tale triplo prodotto vettoriale (che, ricordiamo, & un vettore!!!) in maniera
rapida: ¢ la regola del “BAC — CAB” (si legge “BAC men CAB”)

ix(p x @ =b(@xd)—c(dxh)

Dove il simbolo * indica il prodotto scalare euclideo.



Introduzione del simbolo di sommatorial?

Spesso in Fisica si ha a che fare con sistemi composti da molti corpi, e molte
grandezze che coinvolgono il sistema sono date dalla somma delle grandezze
che caratterizzano le singole componenti (grandezze additive). E scomodo
scrivere esplicitamente queste somme molto lunghe, per cui si ricorre a una
rappresentazione molto compatta, incentrata sul simbolo di sommatoria:

Supponiamo di voler scrivere compattamente la somma dei primi n quadrati,
cioé:
§$=12+22+432+42 4 ...+ n?

Tale somma S si puo scrivere cosi:

n
S = Zkz

k=1

Il simbolo X (sigma maiuscola) prende il nome di simbolo di sommatoria.

k ¢ I’indice di sommatoria, un simbolo usato per indicare in maniera generica
gli elementi dell’insieme coinvolto dall’operazione di sommatoria;

1 ed n sono gli estremi entro cui varia I’indice: k assume tutti i valori compresi
tra 1 ed n in questo caso;

k? & ’espressione che dice come sono fatti i termini da sommare; in sostanza,
per ogni numero k naturale compreso tra 1 ed n, bisogna calcolarne il
quadrato (k?2) e poi sommare tutti i termini calcolati.

La scrittura scritta sopra si legge “sommatoria per k che vada 1 a ndik al
quadrato”.

12 Da questo momento in poi, i vettori sono indicati in grassetto, senza freccia
superiore: i loro moduli sono indicati con lo stesso simbolo ma non in grassetto.



Ulteriore esempio:

L’espressione:

a; corrisponde alla scritturaa,; + a, + a; + -+ a,

n
=1
La sommatoria gode di alcune proprieta che semplicemente derivano dalle

caratteristiche dell’addizione, e che potete verificare scrivendo “per esteso”
le somme:



Terzo principio della dinamica

Immaginate di spingere un oggetto inizialmente fermo. L’oggetto acquistera
una certa velocita per via dell’accelerazione di spinta: tale accelerazione ¢
dovuta al fatto che tramite la vostra

ﬁ*} mano state imprimendo una forza
- sull’oggetto (Il principio della
‘? dinamica). Durante la spinta,

-%-f tuttavia, sicuramente avvertirete una

1 \% “controspinta” da parte dell’oggetto
. sulla vostra mano: anche 1’oggetto,
vy W ciog, sta rispondendo alla vostra
) ﬁf? forza con una forza che agisce sulla
vostra mano. In generale, il 1l
%ﬁ principio della dinamica stabilisce

che:

Se un corpo A esercita una forza su un corpo B, il corpo B esercitera una
forza sul corpo A nella stessa direzione della forza precedente, uguale in
modulo ma opposta in verso.

Quando spingiamo un oggetto, la forza che esso esercita su di noi durante la
spinta non ci fa accelerare: essa € infatti completamente cancellata dagli attriti
tra i nostri piedi e il terreno: provate invece a spingere un compagno
inizialmente fermo (partendo anche voi da fermi) sulla superficie di un lago
ghiacciato: comincerete anche voi a muovervi nella direzione opposta alla
vostra spinta.

E grazie a questo principio, complice la forza d’attrito tra il suolo e i nostri
piedi, che riusciamo a camminare: quando compiamo un passo, spingiamo il
suolo “all’indietro”: quest’ultimo risponde con una forza in verso opposto che
ci permette di avanzare.



Quantita di moto

Prima di dare la definizione formale di quantita di moto di un determinato
punto materiale, conviene riflettere su alcune situazioni quotidiane.

Vi sara certamente capitato di essere colpiti
da una palla. Supponiamo che la palla che
vi colpisca abbia sempre la stessa velocita e
le stesse dimensioni, ma la prima volta si

) tratti di una palla da basket, mentre la
seconda volta di una palla di gommapiuma.
Chiaramente, a parita di dimensioni, la palla
da basket ha una massa maggiore della palla
NPT o di gommapiuma, e, se esse vi colpiscono

A\ 3 alla medesima velocita sino a fermarsi,
AR\ farete piu fatica a fermare completamente il
pallone da pallacanestro piuttosto che la
palla di gommapiuma. Supponete adesso di
dover bloccare un vostro compagno che
cammina verso di voi: farete certamente
meno fatica rispetto a una situazione in cui
quest’ultimo vi viene contro correndo
velocemente.

Capite dunque come, nell’interazione di un corpo con un altro a livello
puramente meccanico, contino sia la velocita del corpo sia la sua massa;
quest’interazione avviene per mezzo di forze, la cui intensita sara dunque
correlata all’entita di velocita e massa.

Introduciamo una grandezza fisica adeguata a interpretare matematicamente
tali interazioni, la quantita di moto.

Dato un punto materiale di massa m, che possiede in un determinato sistema
di riferimento una velocita v, si definisce quantita di moto di tale punto
materiale la seguente grandezza vettoriale, tipicamente indicata con la lettera
p (ma anche q):

p=mv



Chiaramente, dato un sistema costituito da N punti materiali, ciascuno di
massa m;, e avente velocita v; , si puo estendere la definizione alla quantita
di moto del sistema nel modo seguente:

L’unita di misura della quantita di moto ¢ il kg * m/s.

Ricordiamo che queste relazioni che stiamo scrivendo sono di tipo vettoriale,
e i vettori nello spazio posseggono tre componenti (tre scalari). Di
conseguenza, una relazione vettoriale corrisponde a tre relazioni scalari, una
per ciascuna componente. In questo caso:

( N
bx = Zmivix
i=1
N N
p= zmivi > 4Dy =Zmiviy
i=1 i=1
N
sz = Zmiviz



Momento torcente di una forza rispetto a un polo

Supponiamo di voler aprire una porta: come sappiamo dall’esperienza
quotidiana, in genere una porta non ¢ libera di traslare a nostro piacimento
nello spazio, essendo ancorata tramite i cardini al muro di casa. La porta puo
solo ruotare attorno a un asse passante per i punti in cui essa si trova a essere
incardinata. Supponiamo di applicare una forza perpendicolarmente alla
porta, prima molto vicino ai cardini, poi dalla parte pit lontana ai cardini: ci
accorgeremo che apriremo
la porta piu agevolmente
quando la forza sara
applicata lontano dall’asse
di rotazione. Addirittura, se
applichiamo la forza
direttamente sull’asse di
rotazione, non riusciremo
minimamente a smuovere la
porta, neanche di un
I millimetro.

Adesso scegliamo un punto della porta diverso dall’asse, € applichiamo varie
forze sempre della stessa intensita, ma con angoli diversi. Ci accorgeremo che
la configurazione in cui riusciremo ad aprire la porta pit agevolmente
corrispondera a quella in cui la forza applicata & perpendicolare al piano della
porta.

Queste considerazioni si possono generalizzare a ogni situazione in cui si vuol
porre in rotazione un oggetto. Introduciamo una grandezza fisica utile a
sintetizzare le considerazioni precedenti, il momento torcente.

Dato un sistema di riferimento in cui abbiamo scelto un punto fisso P, si
definisce momento di una forza F rispetto a P, indicato generalmente con la
lettera greca =, la seguente grandezza vettoriale:

T=r XF

Dove r rappresenta il vettore uscente da P e con la punta nel punto
d’applicazione di F.



L’unita di misura di questa grandezza ¢ il newton per metro, N * m.

Valgono le medesime considerazioni esposte al paragrafo precedente
riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari.

Notiamo come tale grandezza interpreti bene la situazione scritta sopra:
Consideriamo solo il modulo del momento:

t=rFsina conaangolo fraFedr

Essendo [sina|<1 (=1sea :g+ krm,conk € Z), allora |t| < rF. |l

massimo valore di | |, a parita di r e di F, si raggiunge quando a = 90°, cioé
quando la forza é perpendicolare ar.

Viceversa, se fissiamo a= 90°, allora T = rF. A parita di F, piu e grande r
(cioé piu lontano dal polo é applicata la forza), piu grande € T, cioé la capacita
di mettere in rotazione 1’oggetto (come la porta).

Dato un insieme di N forze F;, il cui punto di applicazione rispetto a un polo
fisso P é individuato dai vettori r;, allora il momento complessivo si pud
determinare cosi:



Momento angolare
Proviamo a fare le medesime considerazioni esposte all’inizio del paragrafo
in cui si definisce la quantita di moto, supponendo che perd 1’oggetto non
compia un moto traslatorio, bensi ruoti rispetto a un asse. Ci accorgiamo che

s
)

L=7xm

~

@

entra in gioco un’altra
grandezza, legata alla
distanza tra il punto e
I’asse, in analogia al caso
del momento di una forza.
Definiamo dunque una
grandezza, anch’essa
vettoriale, che ¢ 1’analogo
“rotazionale” della
quantita di moto, e la
chiamiamo momento
angolare oppure momento
della quantita di moto:

Consideriamo un punto P fisso in un determinato sistema di riferimento. Dato
un punto materiale di massa m, avente quantita di moto p, introduciamo
nuovamente il vettore r applicato in P e con la punta nel punto d’applicazione
di p. Si definisce momento angolare del punto materiale rispetto al polo fisso
P, e lo si indica generalmente con L, il vettore cosi definito:

L=r Xp=r Xx(mv)=mr Xv

2
L’unita di misura di tale grandezza ¢ il kg * mT

Dato un sistema di N punti materiali e fissato un punto P, il momento angolare
complessivo del sistema rispetto al punto P si definisce come la somma
vettoriale dei momenti angolari rispetto a P dei singoli punti materiali:

N N
L= Zmirixvi= ZLl
i=1 i=1



Forti di queste definizioni, andiamo ad applicarle a sistemi di N punti
materiali (come i pianeti che orbitano attorno al Sole o le stelle della Galassia,
date le dimensioni trascurabili di tali corpi rispetto alle enormi distanze che li
separano) per ricavare interessanti proprieta. Prima, per0 introduciamo
un’entita estremamente importante per rappresentare nel suo complesso un
sistema: il centro di massa.

Valgono le medesime considerazioni esposte al paragrafo precedente
riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari.



Centro di massa

Dato un sistema di N punti materiali in un determinato sistema di riferimento,
ciascuno di massa m; (1 <=1i <= N), la cui posizione rispetto all’origine ¢
determinata dai vettori posizione r;, definiamo centro di massa il punto
geometrico che, nel medesimo sistema di riferimento, & individuato dal
seguente vettore:

N

roo= i=1 Myt
cm T N
iz m;
A numeratore compare la
A 1 somma dei prodotti tra la
Z . .
. 2 massa di ciascun punto

materiale e il suo vettore
posizione, a denominatore la
massa totale del sistema (la
somma delle masse delle sue
singole componenti). Il vettore
T¢em €sce dall’origine e punta
nel centro di massa.

Valgono le medesime considerazioni esposte al paragrafo precedente
riguardo la corrispondenza tra equazioni vettoriali ed equazioni scalari:

x Zi=1 m;Xx;
cm N
i=1Mi
y, Zl=1miyl
cm N
i=1Mi
Zizl m;z;
Zem N



Il centro di massa é un punto geometrico dello spazio: puo coincidere con
uno dei punti materiali del sistema, ma puo anche cadere in una regione
vuotal

Per esempio, dato un sistema formato solamente da due punti materiali, il
centro di massa cade sulla congiungente i due punti, piu vicino al punto di
massa maggiore: la sua posizione da un’idea di come sia distribuita la massa
all’interno del sistema.

Esempio/esercizio:

Calcolare la posizione del centro di massa di un sistema di due punti
materiali A, B posti a distanza d, con % = q, rispetto a tali punti.
B

y

M4 (0; 0; 0) Mg (d; 0; 0)

Scegliamo un sistema di riferimento avente 1’asse X in maniera tale da passare
per entrambi i punti A e B (per due punti passa una e una sola retta...), in
maniera tale da semplificare i calcoli, e facciamo coincidere I’origine di detto
sistema con uno dei due punti, per esempio A. Le coordinate di A e di B sono
dunque le seguenti:

A=(0,0,0) ; B=(d,0,0)
Dunque, applicando le tre equazioni scalari precedenti, si ottiene:

my*0+mg=*d mg * d 1
Yem =0, Zem =05 X = = =

my +mg T muat+mp a+1

L’ultima scrittura si ottiene dividendo numeratore e denominatore per mg.



Il centro di massa si trova tra i due punti A e B: se o >1, allora 1/(o+1) <% e
dunque x., < ¥ d, cioé il centro di massa é piu vicino ad A: cid ha
perfettamente  senso, essendo in  questo caso @ my > mg
(si ricordi che Z—;‘ = a). Viceversa, se a <1, B ha una massa maggiore di A e

il centro di massa cade piu vicino a B.

Esercizio “astronomico’:

Calcolare la posizione del centro di massa del sistema Terra-Sole, utilizzando
i dati presenti in tabella e il procedimento dell’esempio precedente,
schematizzando Terra e Sole come due punti materiali, e commentare il
risultato ottenuto: dove cade il centro di massa del sistema? [Suggerimento:
vedi esercizio sopra]



Prima di andare avanti...

Come si comporta il A d’'una somma?

Ala+b+c+-+)=~Aa+Ab+ Ac + -

Come si comporta il A di un prodotto?

A(ab) = (Aa) * b + a = (Ab)

Come si comporta il A d’un’espressione del tipo a * b in cui pero a é costante?
A(ab) = afbf - al-bl- = abf - abl- = a(bf - bl) = alb

(in questo caso Aa = 0)

La costante puo “entrare e uscire liberamente” dal segno di A, e la sua
variazione ¢ nulla...



Secondo principio della dinamica e quantita di
moto

Consideriamo [’espressione del secondo principio della dinamica e
rielaboriamola sulla base della definizione delle nuove grandezze appena
introdotte, in particolare la quantita di moto:

Av  A(mv) Ap

F = = —_—= =
MaA=miyr="ar At

L’applicazione di una forza su un determinato punto materiale comporta una
variazione della sua quantita di moto nel tempo. In particolare, il tasso di
variazione della quantita di moto rispetto al tempo & proprio uguale alla
risultante di tutte le forze che agiscono sul corpo. Se esprimiamo il secondo
principio della dinamica in termini di variazione della quantita di moto nel
tempo, compiamo una generalizzazione del medesimo principio, che si
applichera anche a un sistema in cui la massa non resta costante nel tempo,

. .. A . .-
owvero in cui, in generale, = # 0: tale contributo non nullo & incluso nel

termine A—’t’. Un esempio molto appropriato di un sistema di questo tipo € un
razzo con i motori accesi, che espelle materia dagli ugelli dei motori.



Urti e conservazione della quantita di moto

Sicuramente gualcuno di voi avra giocato a biliardo almeno una volta nella
vita: questo gioco offre molti spunti di osservazione per quanto concerne le
interazioni di tipo meccanico tra corpi: le palle da biliardo, appunto, che si
urtano, o la palla che colpisce la sponda del biliardo.

Durante 'urto tra due palle da biliardo, su una singola sfera agiscono diverse

forze: una di queste ¢ la forza di “interazione”, che I’altra sfera applica su di

my v, 0 Ve essa; la forza di gravita con Cl:li la

12 e 0 Terra attrae la palla, la reazione

vincolare che il piano del biliardo

esercita sulla palla evitando che

essa sprofondi dentro il tavolo,

I’attrito tra la palla e il panno e tra

la palla e I’aria... Trascuriamo gli

"y vy s V' attriti e assumiamo che il piano sia

I perfettamente  orizzontale, in

maniera tale che la reazione

vincolare del piano e il peso della pallina si controbilancino perfettamente.

Prima dell’urto, la risultante delle forze che agiscono sulla palla €&, per le

considerazioni fatte, nulla: dunque la pallina sara in quiete o in moto rettilineo
uniforme sul panno del biliardo.

(o

A un certo punto essa urta D’altra palla: supponiamo che lo faccia
“centralmente” (cio¢ senza particolari urti “ad effetto”). Le uniche forze alle
quali saranno sottoposte le due palline sono le forze d’urto.

Se consideriamo il nostro sistema meccanico complessivamente costituito
dalle due sferette, allora le forze d’urto sono forze interne al sistema, ovvero
sono esercitate da un elemento del sistema su un altro elemento del sistema.
Un sistema i cui elementi sono sottoposti nettamente all’azione di forze
interne si definisce isolato.

Consideriamo 1’urto e chiamiamo le due sfere A e B: per il Il principio della
dinamica, la forza che A esercita su B & uguale e opposta alla forza che B
esercita su A:

Fy.p= —Fp_y



Supponendo che 1’urto avvenga in un intervallo di tempo At, moltiplichiamo
per tale tempo ambo i membri:

FyopAt = —Fp_, At
Ricordando che F = i—'t’, si avra che;
App=—Aps — App+Aps=0 - A@Pp+pa) =0 = Apioe =0
Cioé:
Ptot; = Proty

Abbiamo appena mostrato una proprieta importantissima, che vale in generale
per tutti i sistemi isolati: la quantita di moto totale (che € un vettore nello
spazio!!l) si conserva.

PRIMA: DOPO:
Situazione i Situazione f

P P

®> <o <Q®
=

Piot Ptot

Se nell’urto si conserva anche I’energia cinetica totale (la somma delle
energie cinetiche dei singoli corpi), allora I’urto si definisce elastico. Se I’urto
ha come esito che le due masse procedano “attaccate”, allora I'urto si
definisce completamente anelastico. Esiti “intermedi” configurano 1’urto
come parzialmente anelastico.

Le varieta di urti sono molteplici: proponiamo la soluzione generale nel caso
di urto elastico monodimensionale, in cui imponiamo che tra prima e dopo
’urto si conservino quantita di moto ed energia cinetica complessiva; il fatto
che 1'urto sia monodimensionale permette di utilizzare le relazioni scalari
senza “perdere informazioni” rispetto all’equazione vettoriale. Indicando per
mezzo della lettera v le velocita prima dell’urto ¢ con u le velocita dopo 1’urto,
si ha il seguente sistema di due equazioni in due incognite, le u appunto,
perfettamente risolvibile per mezzo di alcuni semplici passaggi algebrici:



N.B.: Le v; e le u; sono da considerarsi con il loro segno algebrico a seconda
del verso dei corrispondenti vettori rispetto all’asse su cui si svolge il moto.

mqvq + myv, = muq + myu,

1 2 1 2 1 2 1 2
Emlv1 +§m2v2 = Emlu1 +Em2u2

{ml(vl —uy) = my(uy — vyp)
my (v — uf) = my(ui — v3)

{ my (v —uy) = my(up — vy)
my (Vg + u) (v — uq) = my(uy + v3) (U — v7)

Dividiamo membro a membro la seconda equazione per la prima:

{ my(vy — ug) = my(uz — v3)
171+u1=u2+172 d u1=u2+v2—171

Sostituiamo 1’espressione di u_1 nella prima equazione:

my(vy — Uy — vy + V1) = my(up — v,)

E risolviamo per u,:

(my; —my)v, + 2myvy

uz =
my; +m,

E facile adesso ricavare u, sostituendo tale formula nell’espressione di u:

(my —my)vy + 2myv,

u1 =
my; +m,



Se, per esempio, m, > my, allora le formule si possono cosi approssimare
, . . \ . 1. .My o .
(I’approssimazione ¢ tanto migliore quanto piu m—z € un numero grande):
1

U; = U,

U = —v; + 20,

Tali relazioni sono ricavate dividendo numeratore e denominatore di ogni
espressione per m, e trascurando i termini pari a m,/m,, essendo molto
piccoli.

Quest’ultima soluzione mostra che la massa considerevolmente piu grande
procede sostanzialmente indisturbata, mentre il corpo di massa molto piccola
subisce una notevole variazione di velocita se il corpo con cui impatta & molto
veloce, acquisendo molta pil energia di quanta ne possedeva inizialmente,
senza tuttavia “sottrarne” una quantita sensibile al corpo piu massivo. Un
principio concettualmente simile a quello di un urto elastico fra un corpo
molto massivo e uno di massa estremamente piu piccola € quello che sta alla
base dell’effetto fionda

ol R gravitazionale subito da

0l un veicolo spaziale:

esso utilizza la gravita di
un pianeta per alterare il

oroodocy ; percorso e la velocita di
: tale veicolo, ed ¢
comunemente usata per
voli indirizzati verso i

pianeti esterni, il cui

— oy arrivo a destinazione
uscita dall'orbita . .

odita magadior sarebbe altrimenti

proibitivo per costi e
tempi. Nel sistema di riferimento del Sole, la traiettoria del veicolo che
usufruisce della fionda gravitazionale € indistinguibile da quella di una
pallina che ne ultra un’altra, piu pesante, in moto, e rimbalza con velocita

maggiore in modulo di quella iniziale.



Bignamino di Astronomia



Quantita di moto e centro di massa

Se riprendiamo la definizione del vettore posizione del centro di massa di un
sistema di N punti materiali ed eseguiamo alcuni passaggi algebrici,
otteniamo la corrispondente velocita con cui si muove il centro di massa nel
riferimento scelto:

N
r i=1 4T
cm N
i=1M
N
Ar Zl=1miArl
cm N
Zi=1mz
N o Ar; N
Arem  Zi=1™ixg . S Yic1Mv;
= N cm = TN
At Di=1Mi i=1 My

Cerchiamo di scrivere la quantita di moto di un sistema in termini di vg,,:

N N
P = Z mv; = (Z mi) Vem = MeotVem
i=1

i=1

La quantita di moto di un sistema di punti materiali & data dal prodotto della
somma delle masse dei punti e della velocita del centro di massa del sistema.

Continuiamo a rielaborare la precedente scrittura, nell’ipotesi che la massa
del sistema non vari (sistema chiuso):

AP ; M, . Av
APgis = Miot AV,  — Azls = tOtAt =

Da cui FtOt = Mtotacm

Dove con F;,; indichiamo la somma vettoriale di tutte le forze che agiscono
sugli elementi del sistema come se fossero applicate tutte nel centro di massa,
e con a.,,, indichiamo la corrispondente accelerazione con cui si muove il
centro di massa nel sistema di riferimento scelto.



Il vettore F,,; & dato dalla
sommatoria delle forze
esterne e delle forze
interne che agiscono sugli
elementi di un sistema:
ma, per il Il principio
della dinamica, le forze
interne si presentano a
coppie uguali e opposte:
quando immaginiamo di
applicarle al centro di massa, esse si cancellano a vicenda, facendo
“sopravvivere” esclusivamente la risultante delle forze esterne, quindi:

N
Ftot = ZFiEXT
i=1

N
i=1
1l prodotto della massa totale del sistema per I’accelerazione del suo centro

di massa ¢ pari alla risultante delle forze esterne che agiscono sugli elementi
del sistema.

Un’importante conseguenza di queste relazioni appena ricavate si ha per i
sistemi isolati, in cui anche ¥V, F;r=0. Per questi sistemi si ha che a.,, =
0, cioé v,,, € costante nel tempo: le singole componenti del sistema possono
avere un moto complicatissimo, ma se il sistema e isolato, il loro centro di

massa si muovera di moto rettilineo e uniforme.

Facciamo un ultimo esempio che riassuma quanto ricavato finora
(comprendendo anche la legge di conservazione della quantita di moto totale).



Supponiamo di porre due
oggetti (assimilabili a punti
materiali) molto vicini tra loro,
in maniera tale che siano
separati esclusivamente da una

Vj piccola carica esplosiva di
massa trascurabile.

Trascuriamo qualsiasi forza esterna. Inizialmente ciascuna delle componenti
e ferma in un opportuno sistema di riferimento: cio vuol dire che la quantita
di moto complessiva in tale sistema & nulla. Facciamo dungue esplodere la
carica interposta: il sistema oggetti + carica é isolato (le forze derivanti
dall’esplosione sono interne): la quantitd di moto complessiva si deve
conservare, 0ssia, in questo caso, deve rimanere nulla.

Ma allora la velocita del centro di massa si manterra nulla durante tutto il
processo; attenzione: i due oggetti si allontaneranno in conseguenza
dell’esplosione, ma il centro di massa rimarra fermo!



Conservazione del momento angolare

Consideriamo, anche in questo caso, un sistema composto da N punti
materiali di massa m; e scegliamo un determinato sistema di riferimento in
cui questi punti sono individuati dai vettori posizione r; e posseggono
velocita v;. Fissiamo inoltre un punto P, individuato dal vettore uscente
dall’origine rp . Indichiamo con la lettera F (con opportuni pedici) le varie
forze che agiscono su tali punti. Il nostro obbiettivo € scrivere il momento
complessivo delle forze rispetto a P in maniera tale da mettere in luce una
legge analoga alla conservazione della quantita di moto, ma che coinvolge il
momento angolare.

N N
T= Z(Ti —rp) X F; = Z(Ti —1p) X (Fiy, + Fiyyy)
i=1 i=1

L’ultimo passaggio deriva dal fatto che la forza complessiva che agisce sul
punto i-esimo ha due componenti: la risultante delle forze interne che agisce
sul medesimo punto, e la risultante delle forze esterne (sempre sul medesimo
punto). Adesso sfruttiamo la distributivita del prodotto vettoriale

N N
T= Z(Ti —7rp) X Fy, + Z(Ti —1p) X Fy,,
i=1 i=1

Per il I principio della dinamica, il primo termine é nullo: infatti se una
determinata forza interna genera un momento pari a t;, ve ne sara un’altra,
uguale in modulo ma in verso opposto alla prima, che generera un momento
pari a —t;.

A®E P
RA
EA = '[B



Di conseguenza:

N
T= Z(ri - rp) X Fiext = Text
i=1

Nella determinazione del momento risultante di tutte le forze che agiscono su
un sistema di punti materiali, il contributo “netto” e dovuto alle forze esterne
al sistema.

Riprendiamo in esame la prima scrittura per t, sostituendo pero il simbolo 7
CON T, (abbiamo visto che sono uguali):

N
Text = Z(Ti —1p) X F;
=1

E ricordando il Il principio della dinamica formulato in termini di variazione
della quantita di moto, riarrangiamo ’espressione seguente (anche sfruttando
le definizioni delle grandezze che introdurremo):

N N
_ _ Apy\ _
Text = (ri—rp)xXF; = (ri—7rp) X )
i=1 i=1
N N

= Z(Ti —Tp) X (A(Yz—fl)> = Z(Ti —Tp) XM (AA—?)

i=1 i=1

Adesso facciamo un passaggio algebrico che apparentemente complichera la
scrittura precedente, ma che ci sara molto utile: come avrete sicuramente
imparato leggendo il paragrafo relativo al prodotto vettoriale, il prodotto
vettoriale di due vettori paralleli € nullo: di conseguenza anche il prodotto



vettoriale di un vettore per se stesso é nullo. Quindi, se per esempio scegliamo
il vettore v;, allorav; X v; = 0, e I’aggiunta di questa espressione all’interno
della sommatoria non altera la somma.

Av;
Text = Z(rl _rP) X ml(At)

- Yoo s e ()

i=1

A(Ti—Tp

Sfruttiamo la definizione di v; := v ) per sostituirla nell’espressione

precedente:

N
Toxt = Z m; [(W) Xv;+ (ri—rp) X (AAI; )]

i=

Ma, tenendo a mente il prerequisito menzionato all’inizio di questo
documento (A d’un prodotto), ci accorgiamo che il termine dentro parentesi
guadra equivale a

A[(ri —1p) x w4
At

o Al xw] o A[m (- 1) x 7]
Text = zmi At - z At
i=1 i=1

Essendo 1’ultimo passaggio motivato dal fatto che le m; sono delle costanti.

Vi sarete certamente accorti che il termine a numeratore € uguale a AL;, cioé
la variazione del momento angolare rispetto al polo fisso P della particella i-
esima, dunque scriviamo:



N
i, _Z%_AZLM_ALM
ext At At At

i=1

Siamo giunti a un risultato importantissimo: la risultante dei momenti delle
forze esterne che agiscono su un sistema di punti materiali & pari al tasso di
variazione nel tempo del momento angolare del sistema: fare momento
torcente equivale a modificare il momento angolare!

Non solo: se le forze esterne che agiscono sugli elementi del sistema danno
un momento risultante nullo, allora la variazione del momento angolare
complessivo del sistema € nulla, pertanto cid significa che il momento
angolare totale si conserva.

Legge della conservazione del momento angolare: se la risultante dei
momenti delle forze esterne che agiscono su un sistema rispetto a un polo
fisso é nulla, allora il momento angolare totale del sistema si mantiene
costante nel tempo, ossia si conserva.

Esempio: supponete di avere un dispositivo formato da due sferette unite
attraverso un filo rigido, quest’ultimo munito di un meccanismo interno
capace di farlo accorciare: inizialmente le sfere ruotano con una certa
velocita. Supponete ora di azionare il meccanismo interno... Le sfere, piu
vicine, cominceranno a ruotare pit velocemente: il momento angolare del
sistema si deve infatti conservare, ma, dal momento che la massa delle sfere
resta costante e si accorcia la loro distanza, la loro velocita deve
necessariamente  aumentare!  Uguali  considerazioni  (con  molte
semplificazioni) si applicano a un sistema binario formato da due stelle: in
questo caso, il meccanismo interno corrisponde alla gravita con cui le
componenti interagiscono...
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Le due equazioni ricavate in questa sezione, una all’inizio e ’altra adesso,
sono di importanza fondamentale nella meccanica, e le riportiamo qui:

F _ APgistema
extsistema — At

T _ ALsistema
extgistema — At

Esse sono chiamate equazioni cardinali della meccanica, e, a ben vedere,
hanno un aspetto molto simile tra loro: ecco, perché, nel definire il momento
angolare, avevamo usato 1’espressione analogo rotazionale della quantita di
moto...



In generale molte equazioni riferite a moti rotazionali sono simili alle
corrispondenti equazioni per moti traslazionali; ecco uno schema che tenta di
riassumere i parallelismi:

TRASLAZIONE ROTAZIONE
Velocita traslazionale Velocita angolare
GRANDEZZE Quantita di moto Momento angolare
“analoghe”
Forza Momento di una forza
Massa inerziale Momento d’inerzia
(vedremo tra poco)




Momento angolare e centro di massa

Vogliamo calcolare il momento angolare di un sistema di punti materiali,
scegliendo perd come polo fisso il centro di massa del sistema. Utilizziamo
le medesime notazioni per le grandezze fisiche introdotte gia da qualche
paragrafo:

N N N
Ley = Z m(ri —Tem) X v = Z m;r; X v; — Z miTey X V;
i=1 i=1 i=1

La prima sommatoria equivale al momento angolare del sistema calcolato
scegliendo come polo fisso 1’origine del sistema di riferimento, mentre
continuiamo per riarrangiare il secondo termine:

Ley =Lo—rem X ) mivi =Lo —Tey X Py = Lo —Tem X Mycy
i=1

Lo = Ley + Mot em X Vem

1l momento angolare di un sistema rispetto all’origine del s.r. scelto é uguale
al momento angolare del sistema valutato rispetto al centro di massa piu un
termine, uguale al momento angolare rispetto all’origine di un punto
materiale che occupa il centro di massa (e si muove con la sua velocita) e che
possiede una massa uguale a tutta la massa del sistema.



Energia cinetica e centro di massa

Obiettivo di questo paragrafo ¢ il calcolo dell’energia cinetica del solito
sistema di punti materiali: cercheremo anche questa volta di correlare tale
grandezza alle proprieta del centro di massa: 1’energia cinetica del sistema,
essendo ’energia una grandezza additiva, & pari alla somma delle energie
cinetiche delle sue singole componenti:

N

1 2

K= Z > MV
i=1

Le relazioni che definiscono posizione e velocita del centro di massa sono
relazioni vettoriali... cerchiamo di sfruttare le proprieta dei vettori per poterci
ricondurre a tali espressioni; ricordiamo che, come visto nel capitolo
riguardante il prodotto scalare, il quadrato del modulo di un vettore é pari al
prodotto scalare del vettore per se stesso: quindi possiamo scrivere
I’espressione precedente mettendo in luce questa proprieta:

N N
1 1
K= szivi *V; = szi(vCM +vp) * (Wem + V)
i=1 =1

Abbiamo operato la sostituzione v; = vy + v; perché la velocita della
particella i-esima nel sistema di riferimento esterno ¢ pari alla velocita della
medesima particella nel sistema di riferimento del centro di massa (v;) piu la
velocita del centro di massa stesso (v¢p). Continuiamo a svolgere i passaggi
algebrici ricordando le proprieta del prodotto scalare:

N 1 N 1 N 1
K= ZEmLVCM *Vey + ZEvaCM * v+ Z mv; * ey
i=1 i=1 i=1
N
1 ! !
+ Emivl * V;
i=1
N N N

1 2 / 1 12
K =§vCMZmi+vCM*2mivi +szivi

i=1 i=1 i=1



Il secondo termine di quest’espressione ¢ nullo: infatti, nel sistema di
riferimento con origine nel centro di massa, la velocita del centro di massa e
nulla, ed é inoltre cosi definita:

N !
Vem ="~ N ... “Vem=Y ~

=1y

N
mivi' =0

i=1

1l terzo termine € uguale all’energia cinetica complessiva del sistema valutata
nel sistema di riferimento con origine nel centro di massa: chiameremo tale

grandezza K¢, . Il termine YN, m; & pari alla massa totale del sistema: quindi

1 2
K= KCM +EMUCM

L’energia cinetica di un sistema di punti materiali in un sistema di riferimento
in cui il centro di massa possiede una certa velocita, e uguale all’energia
cinetica del sistema valutata nel sistema di riferimento del centro di massa
pit un termine, uguale all’energia cinetica di un punto materiale avente
modulo della velocita pari a quello della v. del centro di massa e massa pari
alla massa complessiva del sistema.




Quantita di moto e centro di massa
(considerazioni finali)

Riprendiamo 1’equazione:
Pyor = Mvcy
Nel sistema di riferimento del centro di massa vy = 0, dunque:
Ptoth =0

La quantita di moto complessiva nel sistema di riferimento del centro di
massa e nulla.

Come avrete notato, nel sistema di riferimento del centro di massa tutte le
equazioni scritte in precedenza assumono un aspetto molto semplice; cio lo
rende un sistema “privilegiato” per descrivere il moto di una serie di oggetti,
attraverso relazioni piu semplici ed eleganti.

Sistemi a due corpi

Un caso importante di sistemi di punti materiali sono i sistemi che contano
solo due componenti, i sistemi a due corpi, in particolare quando i due corpi
si possono considerare soggetti esclusivamente alla loro mutua interazione
(sistemi isolati e forze interne). VVedremo che una grandezza assai comoda per
esprimere alcune proprieta di tali sistemi e la massa ridotta, che definiremo
al momento opportuno.

Se chiamiamo i due corpi 1 e 2, allora per un osservatore inerziale saranno
vere le due seguenti equazioni (Il principio della dinamica):

Fi,, =mya,

Fyi=ma,




Ma, per il terzo principio della dinamica, si ha che F;,, = —F,_,; = F,
percio:
F = myaQa,
_F - m1a1
Pertanto, sommando membro a membro le precedenti equazioni, otteniamo
che
mq
mpQ; = —ma; — 4 =——0a,
2

Adesso determiniamo 1’accelerazione relativa dei due corpi, ossia il vettore
a, —aq:
my my my, + my
a=a;—a,=——a;—a,=—-ay|1+—)=—-a;|——
m; m; m;

Moltiplichiamo e dividiamo per m,: il nostro obbiettivo é far comparire F:

my (m2 + ml) F
a= —a;— =
m;\ m, _mim;
m, + my

Se eseguite I’analisi dimensionale del denominatore di quest’espressione, vi
accorgerete che le sue dimensioni sono quelle di una massa. A tale grandezza
si da il nome di massa ridotta del sistema, poiché il suo valore & minore di
guello di entrambe le masse (provate a dimostrarlo autonomamente). Se le
masse hanno valore molto diverso tra loro (si pensi al sistema Terra-Sole), la
massa ridotta assume un valore molto prossimo a quello della massa piu
piccola (la massa della Terra in questo caso). La massa ridotta si indica con il
simbolo u, per cui:

F = ua

A ben vedere, siamo riusciti a semplificare il problema grazie all’introduzione
di u: ’accelerazione relativa di una massa rispetto all’altra € pari a quella che
in un sistema di riferimento inerziale avrebbe un solo corpo di massa pari alla
massa ridotta del sistema, su cui agisce una forza pari alla forza d’interazione
reciproca degli elementi del sistema.



a=a1-a2

Cosi, in un sistema binario, le due stelle si attraggono reciprocamente con una
forza pari a:

mim;
F= -G r

r2

Se le due stelle hanno masse confrontabili, non possiamo procedere con le
varie semplificazioni gia viste, ma dobbiamo applicare la relazione scritta
sopra.

Dunque, vista la bonta dell’ipotesi di isolamento del sistema, si ha, per la
relazione appena trovata:

mims; mpm;
—7T con U=

ua= —G

T m1+m2

Adesso poniamoci nel sistema di riferimento del centro di massa del sistema
a due corpi: dev’essere, come gia visto in precedenza:

muvL+myu, =0 > muvi= —Myv, o V= ——7,
m



Nel sistema del centro di massa, i vettori v e v, sono paralleli. La velocita
relativa tra i due oggetti sara:

m; m; m;
Vy— V1 =V=Vy+—Vy=|1+—]|v, =—,
my my H

Determiniamo ’energia cinetica del sistema in questo sistema di riferimento:

m
KCM = —m1171 + m2172 =—-m Z UZ + mzvz =
2 2 2 2
1mj L1 i ( 2, 1)
=——"D —mov, = —-MyV _—
2m1 2 2 2V2 2Y2 my

Essendom, = ';—” abbiamo che:
2

lvu m, 1 m,
Kew =50 3 (24 1) = Svuw, (1+422)
=5 v, ) m 217.“ (%) m

Il prodotto degli ultimi due termini e ancora uguale a v, percio:

K —1 2
CM—ZHU

L’energia cinetica nel sistema di riferimento del centro di massa di un sistema
a due corpi é uguale all’energia cinetica di un corpo singolo che si muove

con una velocita di modulo pari alla velocita relativa dei due corpi e avente
massa pari alla massa ridotta del sistema.




Un nuovo modo di vedere la 22 legge di Keplero

Consideriamo un pianeta che orbita attorno al Sole: la seconda legge di
Keplero afferma che il raggio vettore dell’orbita spazza aree uguali in tempi
uguali. Questa legge fu ricavata da Keplero sulla base delle sue osservazioni,
ma si spiega grazie alla legge di conservazione del momento angolare.

Scegliamo un sistema di riferimento con origine nel Sole, in cui il pianeta (di
massa m trascurabile rispetto al Sole) in un determinato punto dell’orbita ¢
individuato dal raggio vettore r e possiede una velocita pari a v. Dev’essere
allora

Ar
—=v - Ar=vAt
At

A quanto corrisponde ’area spazzata dal raggio vettore nel tempo At? E pari
alla meta del parallelogramma che ha per lati Ar e r, quindi equivale alla meta
del modulo del prodotto vettoriale di questi ultimi due vettori:

|r x Ar|

2




_IrvaAt
2
A mlrxv|l |mrxwv| |L|
At m 2 2m  2m

Possiamo assumere che il sistema Sole + pianeta non sia sottoposto all’azione
di forze esterne rilevanti. Quindi L si conserva, ossia in particolare

A U .
|L|=costante. Ma allora v costante, cioé le aree spazzate dal raggio vettore
nel medesimo tempo sono uguali.

Applichiamo la legge di conservazione del momento angolare al perielio e
all’afelio: qui il raggio vettore ¢ perpendicolare alla direzione della velocita e
ha modulo, rispettivamente d, e dp: per cui possiamo adoperare con facilita
le relazioni scalari

mUAdA = mvpdp
UAdA = Updp

Per posizioni generiche sull’orbita, vale ancora la legge di conservazione del
momento angolare, ma va correttamente scritta adoperando la relazione
vettoriale: infatti non € generalmente vero che il raggio vettore sia
perpendicolare alla velocita!

—

il momento angolare L si conserva =

aree uguali in tempi uguali
moto piano

ey,
.

/
"“A b &
it

pianeta P

: velocita ¥
di massa m



Il vettore velocita angolare

Il titolo di questo paragrafo potrebbe, a prima vista, indurre qualcuno in
confusione: la velocita angolare ¢ stata precedentemente definita come uno
scalare... perché adesso ¢ accompagnata nel titolo dalla parola vettore?

Supponiamo che un amico vi dica: “Ho posto in rotazione una trottola sul
tavolo e adesso ruota con una velocita angolare di 5 rad/s”. Provate a
visualizzare nella vostra mente questa trottola: il suo asse potra essere
inclinato di 20°, 5°, 14°, ecc., il vostro amico non 1’ha specificato; la trottola
potra ruotare in senso orario o antiorario vista dall’alto: I’importante ¢ che
ruoti a 5 radss...

Un modo per quantificare sia 1’ampiezza
w dell’angolo percorso, sia la direzione
dell’asse di rotazione e il verso di
quest’ultima in un determinato sistema di
riferimento sta nel modificare lievemente il
concetto di velocita angolare scalare e
sostituirlo con un vettore. Questo vettore ha
modulo pari alla velocita angolare scalare,
direzione
parallela
all’asse di
rotazione
e verso cosi determinabile: avvolgete le
quattro dita opposte al pollice della mano
destra nel verso della rotazione, come per
fare un “OK” con la mano: il pollice
puntera nel verso del vettore velocita
angolare.

Indichiamo tale vettore con w.



Per esempio, in un moto circolare uniforme che si svolge sul piano del foglio
in senso antiorario, il vettore velocita angolare & costante, esce
perpendicolarmente dal foglio e punta verso il lettore.

Chiaramente possiamo riscrivere le relazioni cinematiche relative al moto
circolare attraverso tale vettore; per esempio, la velocita tangenziale é
esprimibile tramite la seguente formula, dove r € il raggio vettore
(congiungente centro-punto)

V= wXTr



Momento d’inerzia

L’esperienza mostra che ¢ piu difficile, a parita di momento torcente
(= momento di una forza) applicato, mettere in rotazione attorno a un asse
fisso un oggetto che:

1) Ha massa maggiore di un altro, a parita di distanza dall’asse;
2) Ha distanza dall’asse maggiore di un altro, a parita di massa.

La medesima difficolta (con uguali caratteristiche) si riscontra quando
vogliamo fermare un oggetto in rotazione. Il corpo tende a mantenere, in
assenza di interventi esterni, la propria velocita angolare inalterata. Possiamo
riferirci a tale tendenza come a una sorta di inerzia rotazionale.

Esiste una grandezza fisica che quantifichi I’inerzia posseduta da un corpo?
Nel caso del moto traslatorio, la grandezza caratteristica & la massa inerziale:
un corpo con una maggiore massa inerziale rispetto a un altro tendera, a parita
di forza applicata, a modificare meno la sua velocita.

In regime rotatorio, una grandezza analoga esiste ed € chiamata momento
d’inerzia.

1l momento d’inerzia di un punto materiale di massa m rispetto a un asse
posto a distanza r & una grandezza scalare cosi definita:
[ = mr?

|asse

I
I
| l=mr
I

L’unita di misura di tale grandezza ¢ il kg * m? .




Il momento d’inerzia ¢ una grandezza additiva: il momento d’inerzia di un
corpo ¢ pari alla somma dei momenti d’inerzia delle sue componenti. Dunque,

per un sistema di N punti materiali aventi massa m_i e distanze r_i da un
determinato asse fisso, si ha:

N
— 2
ltor = z m;r;
i=1



Corpo rigido

Immaginate un corpo con la seguente proprieta: i suoi punti non modificano
mai la loro posizione reciproca. In altre parole, il corpo € un corpo rigido.
Anche per un corpo rigido valgono le equazioni cardinali scritte sopra:
possiamo infatti considerarlo come un insieme di infiniti punti materiali di
massa infinitesima.

Chiaramente, se poniamo in rotazione un corpo di questo genere attorno a un
asse, ogni punto descrivera una traiettoria circolare, e, per via della rigidita, il
moto di tutti i punti sara caratterizzato dall’avere lo stesso vettore velocita
angolare: percid, possiamo riferirci in generale al vettore velocita angolare
del corpo rigido.

Vogliamo trovare la relazione che lega la velocita angolare di un corpo rigido
con il suo momento angolare, e poi utilizzare una delle equazioni cardinali
della meccanica: otterremo un importante risultato, che spiega anche
numerose esperienze quotidiane. ..

Supponiamo di avere un corpo rigido
ruotante con velocita angolare
istantanea w attorno a un asse fisso.
Scegliamo 1’origine del sistema di
riferimento sull’asse di rotazione, e
I’asse z coincidente con 1’asse di
rotazione. Immaginiamo di
suddividere il corpo rigido in
un’infinita di punti materiali, ciascuno
di massa (infinitesima) m;.

Chiamiamo r; il vettore che
congiunge 1’origine con il punto i-
esimo, mentre d; il vettore che

congiunge perpendicolarmente ’asse
col punto i-esimo (vedi figura). Sia
z;la quota rispetto all’origine del
punto i-esimo.




Si ha:

N
L= Z m;r; X v;
i=1

Valgono le seguenti relazioni, che sostituiremo nella formula di L:
ri:Zi'l‘di vi:dei

N
L= Zmi(zi+di)><(w><di) =
i=1

N N
=Zmizl- X ((DXdi) +Zml-di X (w X dl)
i=1 i=1

In queste espressioni compaiono tripli prodotti vettoriali: semplifichiamoli
attraverso la regola “BAC-CAB?” vista nel capitolo dell’algebra vettoriale:

N N

L= ) mjw(z; xd;) — di(z; * )] + Z m;[w(d; x d;) — d;(d; * @)]
i=1 i=1

Il termine (z; * d;) € nullo: i due vettori sono infatti perpendicolari. z; e @
sono paralleli: il loro prodotto scalare é pari al prodotto dei loro moduli (idem
per d; che moltiplica se stesso). d; e w sono perpendicolari: il loro prodotto
scalare é nullo. In definitiva si ha:

N N
L = —wzmizidi + (z mldlz> w
i=1 i=1

Il termine dentro parantesi ¢ uguale a I (momento d’inerzia). Il primo termine
e un vettore diretto perpendicolarmente a @ (dunque all’asse), mentre il
secondo termine ha la stessa direzione e lo stesso verso di w (dunque sta
sull’asse). Il momento angolare L quindi si scrive tramite la somma vettoriale
di due componenti: una parallela all’asse pari a Iw € una perpendicolare
(indichiamola con L,,,). Quindi:

L=1w+Lyerp



oy

)
Ly

Essendo il corpo rigido, il vettore Ly, ruota nel sistema di riferimento
scelto, puntando sempre verso lo stesso punto: in conseguenza di cio, la retta
su cui giace il momento angolare L descrive un doppio cono (se w si mantiene
costante); se w non si mantiene costante, la retta su cui giace L “oscilla” a
seconda del valore di w.

Il risultato trovato ci insegna che, in generale, [ ’asse di rotazione non coincide
con la retta su cui giace il momento angolare. Quand’é che tali direzioni
coincidono, ossia L giace sull’asse di rotazione? L dev’essere parallelo ad w,
percio e sufficiente che il termine L, s’annulli. Affinché tale termine
s’annulli, ¢ sufficiente che, a parita di z, a ciascun punto (individuato dal
vettore d;) ne corrisponda un altro diametralmente opposto (individuato dal
vettore —d;), in maniera tale che i contributi dovuti a d; si annullino a
vicenda. Tale configurazione si ha, per esempio, nei solidi di rotazione,
generabili attraverso la rotazione di una figura piana attorno a un asse.



Chiaramente, essendo | costante per un corpo rigido, si ha:

AL _ Ao
At At

Definiamo il vettore A—': accelerazione angolare e lo indichiamo con la lettera

a: esso quantifica la rapidita con cui cambia il vettore velocita angolare nel
tempo, esattamente come 1’accelerazione indica la rapidita con cui cambia il
vettore velocita nel tempo.

Percio:
AL

E—
ar &

Ma, applicando la seconda equazione cardinale della meccanica, otteniamo:

Texttot =la

Questa relazione somiglia moltissimo alla ben nota F= ma

F = ma significa che maggiore ¢ la massa inerziale (indice dell’inerzia
traslazionale di un corpo), minore € il cambiamento di velocita subito dal
corpo (quantificato da a) a parita di forza applicata;

T = la significa che maggiore ¢ il momento d’inerzia (indice dell inerzia
rotazionale di un corpo), minore & il cambiamento di velocita angolare subito
dal corpo (quantificato da e) a parita di momento torcente applicato.

Se la risultante di tutte le forze che agiscono sul corpo é pari a 0, il corpo si
muove di moto rettilineo uniforme.

Se la risultante di tutti i momenti delle forze esterne che agiscono sul corpo
rigido & pari a 0, il corpo rigido ruota con velocita angolare costante, ossia
il moto di ogni suo punto é circolare uniforme attorno all’asse.

Se la massa di un corpo in rotazione € maggiormente concentrata attorno

\

all’asse, il suo momento d’inerzia € minore. Quest’ultima affermazione




giustifica come facciano le pattinatrici su ghiaccio a compiere spettacolari
piroette, raggiungendo velocita angolari impressionanti.

La ballerina inizialmente parte a ruotare su se stessa con le braccia e le gambe
abbastanza estese: il suo momento d’inerzia € abbastanza alto. Poi,
rapidamente, raccoglie braccia e gambe vicino all’asse di rotazione che passa
per il suo corpo: il suo momento d’inerzia si abbassa notevolmente, ma il
momento angolare si deve conservare: la velocita angolare di rotazione della
ballerina aumentera dunque notevolmente.

’
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Bignamino di Astronomia

Momento d’inerzia di alcuni solidi




Teorema di Huygens-Steiner

Abbiamo visto come si definisce il momento d’inerzia di un punto materiale
e fornito una tabella che elenca i momenti d’inerzia per solidi rigidi notevoli.
Non ha senso parlare di momento d’inerzia di un corpo come di una sua
proprieta intrinseca, come accade per la massa. Se poniamo in rotazione il
corpo attorno a un determinato asse, per esempio guello che passa per il suo
centro di massa, al corpo assoceremo un determinato momento d’inerzia. Se
cambiamo [’asse, il momento d’inerzia cambiera e dovremo dunque
ricalcolarlo per descrivere il nuovo moto rotatorio. Dunque, il valore del
momento d’inerzia dipende anche dalla posizione dell’asse attorno cui si
svolge il moto rotatorio rispetto al corpo che ruota.

I valori che trovate in tabella sono ricavati grazie all’uso del calcolo
infinitesimale (che voi studierete presumibilmente piu avanti), e spesso gli
assi che si considerano sono gli assi di simmetria dei solidi notevoli (passanti
generalmente per il centro di massa). Come fare per ricavare il momento
d’inerzia del medesimo solido rigido rispetto a un altro asse? E necessario
ricalcolarlo daccapo? Oppure € possibile, a partire da un valore noto,
ricavarne uno ignoto piu rapidamente?

La risposta a quest’ultima domanda ¢
affermativa ed e fornita dal Teorema di
Huygens-Steiner o Teorema degli assi
paralleli:

Asse di rotazione

Sia I, il momento d’inerzia di un
corpo di massa m rispetto a un asse
passante per il suo centro di massa:
allora il momento d’inerzia I del
medesimo corpo rispetto a un asse
parallelo al primo e distante d da esso &
dato da:

I = I, +md?



Esempio: Calcolare il momento d’inerzia di una sfera omogenea di massa
m=100 kg e raggio R=1 m rispetto a un asse tangente la sua superficie.

Soluzione:

Il momento d’inerzia di una sfera omogenea rispetto a un qualsiasi asse
passante per il suo centro (che é anche il suo centro di massa) € dato da:

I 2 R?

=-m

cm 5
Applichiamo il teorema appena citato: [’asse a cui si riferisce la traccia ¢
parallelo a un opportuno asse passante per il centro di massa della sfera e dista
R da esso: quindi:

2 2 7
I=§mR2+mR2 = (§+ 1>mR2 =§mR2 =14x100* 12 kgm? =

= 140 kg m?



Energia cinetica rotazionale

Consideriamo un corpo rigido che compie un moto generico nello spazio: in
virtl del vincolo di rigidita, il suo moto pud essere scomposto in due
movimenti pit elementari:

1) Una traslazione nello spazio con velocita pari alla velocita del
suo centro di massa: infatti i punti non possono modificare le loro
posizioni reciproche;

2) Una rotazione (pit 0 meno complessa) attorno a un determinato
asse, nel sistema di riferimento del centro di massa; infatti in tale
sistema la velocita del centro di massa é nulla.

Di conseguenza, I’energia cinetica totale di questo corpo in un dato sistema
di riferimento é dovuta sia al moto di rotazione sia a quello di traslazione: &
dunque errato ritenere che essa sia pari esclusivamente a:

1 2
K= EMvcm

Riprendiamo un’equazione scritta nel paragrafo Sistema di due corpi:

K= %Mvczm + Ko
Ove K, rappresenta I’energia cinetica del corpo nel sistema di riferimento
del centro di massa: un’energia rotazionale, appunto: come fare a
determinarla? Dividiamo il corpo rigido in un numero molto grande di parti,
cosi piccole da poterle assimilare a punti materiali, e sommiamo i vari
contributi all’energia cinetica nell’ipotesi che in tale sistema 1’asse si

mantenga fisso:
1 2
Kem = Z Emivi
L

Ove v; € il modulo della velocita della particella i-esima nel s. r. del centro di
massa. Ma, come abbiamo gia precisato, ogni punto del corpo rigido descrive
attorno all’asse fisso un moto circolare con velocita angolare w, dunque:

V; = (Udl'



Ove con d; abbiamo indicato la distanza tra il punto i-esimo e 1’asse fisso;

pertanto:
1 1 1
Kcm = szl(wdl)z = E(Z mldlz) (4)2 = 51(1)2
L L

Per cui:

1 2 1 2
K :EIO) +§M‘l7cm

Il primo termine e chiamato energia cinetica rotazionale, il secondo energia
cinetica traslazionale.



Esercizi

Sulla conservazione del momento angolare

Betelgeuse & una supergigante rossa giunta a una fase piuttosto avanzata
della sua evoluzione. La sua massa € pari a circa 20 masse solari. Pertanto
e possibile che tale stella esploda come supernova (se [’esplosione non é gia
avvenuta), e si trasformi in una stella di neutroni. Se, invece di espellere gli
strati piu esterni, Betelgeuse conservasse tutta la sua massa, e si contraesse
fino a raggiungere le dimensioni di una stella di neutroni (assumete R=15
km), con che periodo ruoterebbe su se stessa? Fate la grossolana
approssimazione di considerare Betelgeuse una sfera omogenea e rigida, che
ruota su se stessa attualmente con un periodo di 17 anni e possiede un raggio
pari a circa 990 raggi solari.

Soluzione:

Durante la contrazione non intervengono forze esterne: il momento angolare
si conserva, per cui

L=Iw
Ll =Lf
Ila)l —If(l.)f
2 2 2 2

2T Ri z 2T Rf 2
T, \R;) T, R;
T;=25%10""s

Chiaramente otteniamo un valore molto piccolo, 250 nanosecondi! In realta
la massa di Betelgeuse variera durante il collasso, per via dell’espulsione
degli strati piu esterni, e percio il periodo di rotazione della stella di neutroni



risultante sara maggiore (tipici valori per stelle di neutroni: da qualche
millisecondo a qualche secondo).

Sul corpo rigido ed energia rotazionale

Si supponga di lanciare una monetina (disco omogeneo di diametro 23.25
mm, spessore 2.33 mm e massa 7.5 9 -descrizione di una moneta da 1 €-) di
taglio lungo il percorso in figura: determinare la velocita iniziale con cui &
necessario lanciarla, nell’ipotesi che essa percorra il profilo in figura
rotolando senza strisciare, affinché essa si distacchi dal profilo esattamente
nel punto piu alto.

7

R=20cm

Soluzione:

La forza peso ¢ ’'unica forza agente sulla moneta a compiere lavoro, quindi
I’energia meccanica si conserva. Inizialmente, la moneta ruota attorno
all’asse perpendicolare al piano del foglio e, nel tratto piano, il suo centro di
massa é alto r (raggio della moneta).

Quando giunge nel punto piu alto del profilo, non ruotera piu (si sta per
staccare), su di essa non agira piu la reazione vincolare del profilo, ma



soltanto la forza peso, da cui dipendera il valore della velocita tangenziale in
quel punto (vy), infatti:

2
Vr

g:R—r

Ove R-r ¢ il raggio di curvatura del moto del centro di massa nel punto piu
alto della traiettoria. Dunque
vi=gR-1)

Imponiamo la conservazione dell’energia meccanica (cinetica, a sua volta sia
traslazionale che rotazionale + potenziale gravitazionale) tra inizio e fine:

1 2 1 2 1 2

Smy; + Elmonetawi + mgr = S mvf +mg(2R — 1)
La moneta é assimilabile a un disco omogeneo:

1
Laisco = Emr

Inoltre la moneta rotola senza strisciare: vale dunque la seguente relazione:

2

V= wr
Per cui:
1 11 v? 1
Emv +E*Emr *—+mgr——mg(R—r)+mg(2R—r)
1, 1, 1 1
Evi+Zvi+gr=§gR—Egr+2gR—gr
3 2_5 R 5
gV TR T
3 2_5 (R —1)
PR
, 5 4 10
vi =5*39R-1)=—gR-1)



ELEMENTI di STATISTICA

Gli errori di misura

Per misura si intende una determinata procedura attraverso la quale si assegna
un intervallo di valori numerici a una determinata grandezza: il processo di
misura si deve basare dungue sui seguenti punti:

1) Una descrizione accurata del sistema fisico in esame e della grandezza
da misurare;

2) Una descrizione accurata degli strumenti con i quali effettuare la
misura e del loro utilizzo.

Perché abbiamo affermato che 1’esito di una misura di una grandezza fisica &
un intervallo di valori piuttosto che un ben determinato valore?

Durante il processo di misura intervengono una serie di fattori (anche molto
diversi tra loro) che tendono a “spostare” il risultato dal valore vero di quella
determinata grandezza; quest’ultimo, dunque, € inconoscibile. Dal momento
che non possiamo determinare sperimentalmente il valor vero di una
determinata grandezza, ¢ necessario associare un’incertezza a ogni misura,
ossia esprimerne 1’esito come un intervallo di valori con una certa ampiezza,
tipicamente centrato su un valore che potremmao definire ottimale.

Spesso si fa confusione tra i termini incertezza ed errore: essi SON0O SPesso
usati come sinonimi, ma in realta tra di essi intercorre una sottile differenza
concettuale.

L’errore é definito come il valore assoluto della differenza tra il valore
ottimale misurato e il valor vero di una determinata grandezza: essendo
inconoscibile il valor vero, anche ’entita dell’errore € inconoscibile.

Quindi I’effettuazione di una misura consiste nella determinazione della
miglior stima del valor vero di una determinata grandezza (cioé nella
determinazione di un valore ottimale) e della miglior stima dell errore sulla
misura (ovvero I’incertezza).




Pertanto, 1’esito della misura di una grandezza G sara cosi genericamente
espresso:
G = (Xottimate T AX) u.m.

Ax = incertezza
Y icitura “u. m.” sii una unita di misura.
Dove con la dicitura “u. m.” si intende 1’opportuna unita di misura

Esempio: abbiamo misurato la massa di una persona ottenendo
m = (81.2+0.3) kg

Prima di analizzare brevemente le tipologie di errore e le loro cause, notiamo
che ¢ possibile esprimere I’incertezza su una misura in due modi:
1) Sotto forma di incertezza assoluta: essa corrisponde all’intervallo Ax e
ha le stesse dimensioni della grandezza G (0.3 kg nell’esempio sopra);
2) Sotto forma di incertezza relativa (detta anche precisione): essa
corrisponde al rapporto tra I’incertezza assoluta e il valore ottimale
della grandezza, ossia:

. ) Ax
incertezza relativa =

Xottimale

Pertanto, I’incertezza relativa € adimensionale.

Nell’esempio sopra:

[ t lativa = 03 =4x%1073
— " A«
incertezza relativa 812

E possibile esprimere tale incertezza anche in termini percentuali:

Ax
inc.percentuale = ———— * 100%
Xottimale

Riprendendo sempre I’esempio fatto:

inc.percentuale = 0.4%



Tipologie di misure

Una misura pu0 essere:

1)

2)

3)

Diretta: la grandezza fisica viene direttamente confrontata con la
grandezza campione scelta come unita di misura.

Esempio: la misura dell’altezza di una persona attraverso un metro, della
massa di un corpo attraverso una bilancia a bracci uguali...

Strumentale: la grandezza fisica da misurare viene tradotta in un’altra
grandezza dallo strumento di misura; quest’ultimo viene opportunamente
tarato per restituire direttamente i valori della grandezza in esame.

Esempio: la temperatura di un liquido viene misurata con un termometro
a mercurio: in realta, la grandezza temperatura viene tradotta dallo
strumento (il termometro), in un’altra grandezza, ossia 1’altezza della
colonnina di mercurio. Il termometro € tarato in maniera tale che noi
possiamo leggere direttamente la temperatura, ossia il costruttore del
termometro si incarica di effettuare la conversione altezza colonnina —
temperatura.

Indiretta: il valore della grandezza fisica viene determinato attraverso una
formula fisica che lega tra di loro altre grandezze.

Esempio: misura del peso di un oggetto attraverso la formula P = mg,
avendo misurato direttamente m e g.

Gli strumenti di misura possono essere analogici o digitali:
1) Strumenti analogici: la misura si effettua individuando un punto su una

scala graduata oppure valutando la posizione di un ago o altro indicatore;

2) Strumenti digitali: il valore ottimale della misura compare su uno

schermo, lo sperimentatore deve leggerlo.
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Calibro digitale (in alto) e metro analogico (in basso): entrambi servono a
misurare delle lunghezze.




Tipologie di errori

Errori massimi (o strumentali)

Gli strumenti utilizzati per effettuare una misura hanno una certa risoluzione
che li caratterizza. Con tale termine intendiamo la minima variazione del
valore della grandezza che lo strumento riesce ad apprezzare. Ad esempio, un
normale righello possiede tipicamente una risoluzione di 1 mm, ossia la
distanza tra due “tacche” piu vicine é pari a 1 mm. Quando effettueremo una
misura di lunghezza con tale righello, tipicamente assoceremo al valore
ottimale trovato un’incertezza pari alla risoluzione dello strumento, non
riuscendo a quantificare frazioni di lunghezza inferiori alla minima distanza
fra due tacche adiacenti della scala.

In questo caso, I’errore che viene introdotto nel processo di misura € un errore
massimo o strumentale, ossia il valore vero della grandezza in esame é
incluso nell’intervallo definito dal valore ottimale e dall’incertezza. In altri
termini, vi & una probabilita del 100% che il valor vero della grandezza cada
nell’intervallo suddetto.

Errori sistematici

Puo succedere che 1’esito di una misura si discosti dal valore vero per via
d’una serie di cause incontrollate ma in linea di principio controllabili, che
determinano una sottostima o una sovrastima sistematica del valore della
grandezza: in questo caso siamo in presenza di un errore sistematico. In altre
parole, otteniamo un valore misurato sistematicamente maggiore oppure
minore rispetto, ad esempio, a un valore di riferimento. Alcune situazioni
tipiche in cui cio si verifica sono le seguenti:

1) Lo strumento di misura € calibrato male o non riproduce fedelmente
I’unita di misura (per esempio, le tacche del righello di cui sopra non
distano esattamente 1 mm ma leggermente di piu, cio comporta che le
lunghezze misurate con questo strumento siano sottostimate);



2) Si sta adoperando lo strumento in condizioni operative diverse da
quelle per cui esso € stato progettato.

Esempio: il manuale di un sensore di temperatura per liquidi specifica
che lo strumento va inserito completamente nel recipiente: inserirlo
solo parzialmente puo introdurre nel processo di misura degli errori
sistematici;

3) La grandezza misurata non corrisponde in realta con quella che si
vorrebbe misurare.
Esempio: vogliamo misurare ’attivita di una sorgente radioattiva, ma
nei dati raccolti € presente anche il fondo ambientale: 1’attivita della
sorgente viene cosi sovrastimata.

Una procedura che riduce maggiormente I’impatto degli errori sistematici
rispetto a un’altra si definisce piu accurata.

Errori casuali

Misure ripetute di una stessa grandezza possono dare esiti diversi per via di

una serie di fattori, fluttuazioni incontrollabili: siamo in presenza di errori

casuali. Per esempio, supponete di misurare per 100 volte con un cronometro

al centesimo di secondo il tempo di discesa di una sferetta lungo un piano

inclinato: verosimilmente non otterrete 100 valori uguali, bensi una serie di

valori che ricorrono (cioé sono frequenti) in modo variabile.

In generale, le cause della variabilita delle misure ripetute possono essere

svariate, ad esempio:

1) Lagrandezza in esame caratterizza una popolazione di individui, e il suo
valore varia da individuo a individuo. Esempio: 1’altezza degli abitanti
di una citta;

2) La grandezza in esame € intrinsecamente casuale (0 intrinsecamente
stocastica)
Esempio: il decadimento radioattivo € un fenomeno intrinsecamente
casuale;

3) La risoluzione dello strumento utilizzato & cosi buona da far si che si
superi il limite di riproducibilita della misura; ¢ il caso dell’esempio a
inizio paragrafo, in cui il cronometro al centesimo di secondo possiede



una buona risoluzione... se ne avessimo usato uno con una risoluzione
di 1 s, probabilmente non avremmo ottenuto variabilitd su misure
ripetute, bensi misure tutte uguali.
| fattori che provocano errori casuali agiscono, a differenza di cid che accade
in presenza di errori sistematici, in entrambi i versi, e all’aumentare del
numero di misure il loro effetto tende dunque statisticamente ad annullarsi.
Tali errori si possono percio trattare rigorosamente attraverso gli strumenti
della statistica e del calcolo delle probabilita.

Quando effettuiamo misure ripetute di una stessa grandezza in presenza di
fluttuazioni casuali otteniamo un campione sperimentale (ossia I’insieme dei
valori trovati). Immaginiamo che tale campione sia estratto da una
popolazione, ossia I’insieme di tutti i possibili valori teoricamente ottenibili
come esito di una misura di quella grandezza. Ogni singolo valore di
quest’insieme prende il nome di individuo.

Possiamo rappresentare graficamente 1’esito di un campionamento, per
esempio attraverso un istogramma.

L’istogramma puo mostrare in ascissa gli intervalli relativi ai valori ottenuti
e in ordinata il numero di misure (ossia il numero di occorrenze) il cui valore
cade in ciascun determinato intervallo. Un istogramma di questo tipo prende
il nome di istogramma in occorrenze.

Esempio: si consideri la figura qui sotto. Essa mostra un istogramma in
occorrenze: come si pud vedere, abbiamo ottenuto, per esempio, 4 misure
comprese fra i valori 2 e 3, una misura soltanto nel range 0-1... mentre la
maggior parte di valori ottenuti (ben 11 misure) & nel range 6-7.

istogramma in occorrenze

h |
Entries 11‘
Mean 4.837
StdDev  1.983 |
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Possiamo anche confrontare istogrammi ottenuti da campionamenti con un
numero totale di misure diverso, tuttavia a tal fine I’istogramma in occorrenze
non & molto adatto; & preferibile servirsi di un istogramma in frequenze. La
frequenza relativa a un generico intervallo k ¢ cosi definita:
Ny

S N
Dove con n,, si intende il numero di occorrenze in quel determinato intervallo,
mentre N, € il numero totale di misure (la somma di tutte le occorrenze nei
vari intervalli). Per esempio, nel nostro istogramma N, = 49 (provate a
contare voi stessi le occorrenze totali), e se prendiamo in esame 1’intervallo
6-7, allorang_, = 11. Dunque

11
foe7 = 9= 0.22
Ossia il 22% delle misure cade nell’intervallo 6-7.
L’istogramma in frequenze si costruisce calcolando le frequenze per ciascun
intervallo con la formula riportata e riportandole in ordinata. Le ascisse
restano invariate. Qui sotto riportiamo 1’istogramma in frequenze realizzato a
partire dal precedente istogramma:

istogramma in frequenze

h
Entries 10
Mean 4.837
Std Dev 1.983
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Istogramma in frequenze ottenuto a partire dall’ist. precedente: notare,
come gia calcolato sopra, come il picco abbia una frequenza pari a
circa 0.22. Si provi a calcolare come esercizio le altre frequenze e a
confrontarle con tale istogramma.



Dalle figure potete notare come il campione sia distribuito attorno a un valore
“di picco”, a cui compete una frequenza maggiore, ma contemporaneamente
si estenda sia a valori maggiori sia a valori minori rispetto all’intervallo a
maggior frequenza.

Come possiamo comportarci se volessimo riassumere 1’esito del nostro
campionamento in maniera piu sintetica, senza cioé riportare tutti i valori
ottenuti? Possiamo definire alcuni parametri rappresentativi del campione,
che rientrano in generale nelle categorie degli indici di posizione e degli indici
di dispersione. | primi quantificano sinteticamente la posizione complessiva
dei dati del campione nella scala dei valori che pud assumere la grandezza in
esame: possono dunque essere usati per determinare il valore ottimale della
grandezza. Nel caso del campione rappresentato attraverso gli istogrammi in
figura, possiamo notare come €esso si posizioni complessivamente attorno al
valore 6.

Gli indici di dispersione quantificano 1’ampiezza della dispersione (cio¢ dello
scostamento) dei singoli valori del campione dall’indice di posizione:
possono essere utilizzati per stimare 1’incertezza sul valore ottimale.




Tipici indici di posizione

Centro intervallo
E cosi definito:
Xmassimo T Xminimo
Xe =
2
OVe X;massimo € il valore pit alto del campione e x,,inimo € il minimo.
Corrisponde, come dice il nome stesso, al valore che sta a meta tra il massimo
e il minimo del campione.

Moda

E il valore che ricorre con maggiore frequenza.

Mediana

Per determinare la mediana ordiniamo in modo crescente gli elementi del
campione: se il numero di elementi é dispari, la mediana sara il valore centrale
di questa sequenza; se € pari, vi saranno due valori centrali: la mediana
corrisponde alla semisomma di tali due valori (che € a meta strada tra i due).
Esempio: determinare la mediana dati i valori 11, 3, 5, 2, 7, 14.
Ordiniamo i valori in ordine crescente

2 35 71114
Essi sono in numero pari, dunque

547 12

digna="——="=6
mediana ) >



Media aritmetica
(tipicamente I’indice di posizione piu usato)
Essa é pari al rapporto tra la somma di tutti i valori del campione e il numero
totale di misure:
Tiaxi _xitx 4ty
N N

X =

Esempio: Calcolare la media dei valori dell’esempio precedente.
11434542+ 74+14
X = 6 =7




Tipici indici di dispersione

Semidispersione massima
Quantifica la “semiampiezza massima” dei valori del campione ed ¢ cosi

definita:
Xmassimo — Xminimo

semidisp.massima =

2
Esempio: usando i valori dell’esempio di cui sopra, otteniamo
. , 14 -2
semidisp.massima = =6

2

Scarto medio
Data una generica misura x; di un campione, definiamo cosi il suo scarto d
rispetto alla media:

d= Xi — X

(differenza tra il valore e la media).
Chiaramente, la somma di tutti gli scarti deve fare 0. Infatti:
N N N N
somma scarti = dl-=Z(xi—f)=2xi—zf=Nf—Nf=0
=1 i=1 i=1 i=1

i i
Come fare a non far annullare il contributo complessivo di tali scarti?
Potremmo considerare ciascuno di essi in valore assoluto. Definiamo scarto
medio la media dei valori assoluti degli scarti:

3 ldy| + |dy| + -+ |dy]
&=z|di|= 1 2 N

: N
i=1



Deviazione standard
(o scarto quadratico medio)

Essa € pari alla radice quadrata del rapporto tra la somma dei quadrati degli
scarti e il numero totale delle misure diminuito di 1.

e [eee-p
* N-1 N-1

G =02+ (g — X2+ 4 (xy — %)?

B N-1
La deviazione standard del campione rappresenta la miglior stima
dell’incertezza che é possibile associare a una singola misura del campione
stesso: in altre parole, se effettuassimo un’ulteriore misura, il valore trovato
avrebbe una probabilita abbastanza alta di cadere nell’intervallo con centro
nella media aritmetica del campione e ampio +ao,. Qualora effettuassimo
campionamenti sufficientemente numerosi, ma con un diverso numero di
misure per ciascuno, noteremmo che il valore di o, cambierebbe di poco.

Perché a denominatore compare un N-1 al posto di N? La spiegazione € da
ricercarsi nel numeratore. A numeratore compaiono gli scarti delle singole
misure, che, come ormai sappiamo, non sono tutti indipendenti. Dal momento
che la loro somma deve dare 0, conoscendo N-1 valori degli scarti potremmo
determinare I’N-esimo. Se per esempio la somma dei primi N-1 scarti fa 0.3,
I’N-esimo scarto dev’essere pari a -0.3 perché la somma complessiva deve
dare 0. Dunque, gli scarti indipendenti (cioe quelli che possono assumere un
determinato valore indipendentemente dal valore degli altri) sono in realta N-
1. Ecco perché a denominatore si divide per N-1.

Abbiamo detto che la deviazione standard del campione € la miglior stima
dell’incertezza da associare a ogni singola misura del campione. Ma qual ¢ la
miglior stima dell’incertezza da associare alla media aritmetica di un
campione? Essa prende il nome di deviazione standard della media e si
calcola cosi:



Ovvero la deviazione standard della media e pari al rapporto tra la
deviazione standard del campione e la radice del numero totale di misure.

Al crescere del numero di misure, la deviazione standard della media
diminuisce: cid ha senso, dal momento che, disponendo di un numero di
misure via via maggiore, la media tende ad avvicinarsi al valor vero della
grandezza in esame. Al limite, se potessimo effettuare un campionamento con
un N tendente a infinito, la media del campione sarebbe uguale al valor vero
della grandezza in esame.

Dunque, la misura di una grandezza G affetta da errori casuali, di cui si e
raccolto un campione di valori, pud essere cosi espressa:

G =(Xx+oz)um.
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TABELLA DATI

Sole
Raggio medio 695475 km
Massa 1.99 x 103%g
Temperatura 5778 K
Magnitudine apparente dalla Terra —26.74
Magnitudine assoluta +4.83

Eta stimata

4.57 * 10°anni

Classe spettrale

G2V

Posizione nel diagramma H-R

Sequenza principale

Distanza dal centro galattico

27 «103a. L.

Periodo di rivoluzione intorno al centro galattico

2.5 * 108anni




Mercurio

Raggio medio 2440 km
Massa 3.301 % 1023 kg
Semiasse maggiore dell’orbita 57.91 x« 10° km
Periodo orbitale 87.969 giorni
Periodo di rotazione 58.646 giorni
Eccentricita dell’orbita 0.2056
Albedo 0.14




Venere

Raggio medio

6052 km

Massa

4.867 x 10%* kg

Semiasse maggiore dell’orbita

108.2 * 10° km

Periodo orbitale

224.70 giorni

Periodo di rotazione

—243.03 giorni

Eccentricita dell’orbita

0.0068

Albedo

0.67




Terra

Raggio medio

6378 km

Massa

5.972 % 10%* kg

Semiasse maggiore dell’orbita

149.6 * 10° km

Periodo orbitale

365.25 giorni

Periodo di rotazione

23h 56m 4s

Eccentricita dell’orbita

0.0167

Albedo

0.37




Luna

Raggio medio

1738 km

Massa

7.346 x 10%% kg

Semiasse maggiore dell’orbita

384.4 x 103 km

Periodo orbitale 27.322 giorni
Periodo di rotazione 27.322 giorni
Eccentricita dell’orbita 0.0549

Albedo

0.11




Marte

Raggio medio

3397 km

Massa

6.417 x 1023 kg

Semiasse maggiore dell’orbita

227.9 % 10 km

Periodo orbitale 686.97 giorni
Periodo di rotazione 24h 37.4m
Eccentricita dell’orbita 0.0934

Albedo

0.15




Giove

Raggio medio

71490 km

Massa

1.899 * 1027 kg

Semiasse maggiore dell’orbita

778.4 % 10° km

Periodo orbitale 11.863 anni
Periodo di rotazione 9h 55.5m
Eccentricita dell’orbita 0.0489

Albedo

0.52




Saturno

Raggio medio 60270 km
Massa 5.685 * 1026 kg
Semiasse maggiore dell’orbita 1.427 x 10° km
Periodo orbitale 29.447 anni
Periodo di rotazione 10h 33.6m
Eccentricita dell’orbita 0.0542
Albedo 0.47




Urano

Raggio medio

25560 km

Massa

8.682 x 10%° kg

Semiasse maggiore dell’orbita

2.871 % 10° km

Periodo orbitale 84.017 anni
Periodo di rotazione —17h 14.4m
Eccentricita dell’orbita 0.0472

Albedo

0.51




Nettuno

Raggio medio 24770 km
Massa 1.024  10%® kg
Semiasse maggiore dell’orbita 4.498 * 10° km
Periodo orbitale 164.79 anni
Periodo di rotazione 16h 6.6m
Eccentricita dell’orbita 0.0086
Albedo 0.41




Superficie e volume di alcuni solidi

Area dell’ellisse m*xaxb
Superficie della sfera 4mR?
Superficie del cilindro 2nR(h +R)

Volume della sfera g”R3
Volume del cilindro R?h

Fattori di conversione

1 anno luce 9460.7 * 10% km 63240 UA
1 parsec 3.2616 anni luce 206265 UA
1 radiante 57°17'45" 206265"
Giga (G) 10° Micro (u) 1076
Mega (M) 10° Nano (n) 107°
Kilo (k) 103 Angstrom (4) 10710
i |0 [




Costanti fisiche e dati astronomici

Costante di Stefan-Boltzmann

0 ="5.670*10"8Wm 2K~*

Velocita della luce nel vuoto

c =299792458 ms~1!

Costante di Gravitazione
Universale

G = 6.674+ 1071 Nm?kg~2

Costante di Wien

b=12898%10"3mK

Accelerazione terrestre s.I.m.

g =9.807ms?

Obliquita dell’eclittica

23°27'

Lunghezza d’onda a riposo
dellariga H,

6562.8 A

Costante di Hubble

67 kms~! Mpc™?!
75 km s~ 1Mpc~t
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