

XXIII Campionati Italiani di Astronomia

Finale Nazionale - 7 maggio 2025

Prova Teorica - Categoria Master

1. Markab alla sua massima altezza

Urania, il pastore abruzzese mascotte della finale, osserva la stella Markab da Teramo ($\phi = 42^{\circ}$ 39' N, $\lambda = 13^{\circ}$ 42' E) la sera del 7 ottobre e la vede culminare alle 23h 06m di tempo siderale locale. Calcolate:

- a) a che ora di tempo siderale locale Urania vedrà Markab culminare il 2 febbraio osservata da Teramo;
- b) a che ora di tempo siderale locale il suo amico Wolfgang, pastore delle Alpi, vede Markab culminare il 7 ottobre da Torino ($\varphi = 45^{\circ}$ 04' N, $\lambda = 07^{\circ}$ 40' E);
- c) l'ascensione retta di Markab.

Soluzione

Osservata da una determinata località una stella culmina quando la sua ascensione retta è uguale al tempo siderale locale. Poiché nell'intervallo di tempo considerato l'ascensione retta ha una variazione trascurabile, Markab culmina allo stesso tempo siderale locale ogni giorno e in ogni località.

- a) Urania vedrà Markab culminare alle 23h 06m di tempo siderale locale;
- b) Wolfgang vedrà Markab culminare alle 23h 06m di tempo siderale locale;
- c) l'ascensione retta di Markab è 23h 06m.

2. Salviamo la terra!

Immaginate che il 5 luglio 2123 l'asteroide Werewolf, con un diametro di 1 km, arrivi alla minima distanza dalla Terra, in corrispondenza del perielio della sua orbita che ha un semiasse maggiore di 1.14525 UA e una eccentricità di 0.11221.

- a) Trascurando l'attrazione gravitazionale della Terra, dimostrate che la Terra è a rischio di collisione con Werewolf. b) La sonda DART 2 verrà lanciata allo scopo di collidere con Werewolf e deviarlo dalla sua orbita, proprio nel momento in cui passerà all'afelio immediatamente precedente alla possibile collisione. In seguito all'impatto di DART 2, la velocità dell'asteroide aumenterà di 2 m/s, senza cambiare direzione. Considerando una distanza di sicurezza dalla superficie terrestre pari a 5 raggi terrestri, la deviazione sarà sufficiente a evitare la collisione con la Terra?
- c) Rappresentate con un disegno le orbite e le posizioni della Terra e di Werewolf prima e dopo la deviazione. Nota: per la risoluzione di questo problema utilizzate i seguenti valori per la massa del Sole ($M_{\odot} = 1.98849 \cdot 10^{30}$ kg), per la costante di gravitazione universale ($G = 6.67430 \cdot 10^{-11}$ m³ · kg¹ · s⁻²) e per l'unità astronomica (1 UA = $1.49598 \cdot 10^{8}$ km).

Soluzione

a) Il 5 luglio la Terra si troverà all'afelio della sua orbita e il suo centro sarà a una distanza dal Sole **D**_T pari a:

$$D_T = a_T \cdot (1 + e_T) = 1 \text{ UA} \cdot (1 + 0.01673) \approx 1.01673 \text{ UA}$$

mentre Werewolf passerà lo stesso giorno al perielio, a una distanza dw dal Sole:

$$d_W \, = a_W \cdot (1 - e_W) = 1.14525 \; \text{UA} \, \cdot (1 - 0.11221) \simeq 1.01674 \; \text{UA} \, .$$

In questa situazione la distanza tra il centro dell'asteroide e il centro della Terra è solamente di 0.00001 UA = 1496 km, minore del raggio terrestre. Possiamo affermare che la precisione dei dati è sufficiente a dire che Werewolf ha una probabilità molto alta di colpire la Terra quel giorno.

b) Quando si trova all'afelio, la distanza $\mathbf{D}_{\mathbf{W}}$ dell'asteroide dal Sole è:

$$D_W = a_W \cdot (1 + e_W) = 1.14525 \text{ UA} \cdot (1 + 0.11221) \approx 1.27376 \text{ UA}$$

e la sua velocità vw, puramente trasversale, è data da

$$\begin{split} v_W \ = \ \sqrt{G \cdot M_\odot \cdot \left(\frac{2}{D_W} - \frac{1}{a_W}\right)} = \ \sqrt{6.67430 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2} \cdot 1.98849 \cdot 10^{30} \ kg \cdot \left(\frac{2}{1.27376 \ UA} - \frac{1}{1.14525 \ UA}\right)} \simeq \\ \simeq \ \sqrt{6.67430 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2} \cdot 1.98849 \cdot 10^{30} \ kg \cdot \left(\frac{2}{1.90552 \cdot 10^{11} \ m} - \frac{1}{1.71327 \cdot 10^{11} \ m}\right)} \simeq 24.8664 \cdot 10^3 \ \frac{m}{s} \, . \end{split}$$

Se l'impatto riesce ad accelerare l'asteroide di 2 m/s, la velocità diventa $v'_W = 24.8684$ km/s senza cambiarne la direzione e quindi senza cambiare la linea degli apsidi, e questo aumenta il semiasse maggiore a:

$$a'_{W} = \left(\frac{2}{D_{W}} - \frac{v'_{W}^{2}}{G \cdot M_{\odot}}\right)^{-1} = \left(\frac{2}{1.90552 \cdot 10^{11} \text{ m}} - \frac{\left(24.8684 \cdot 10^{3} \frac{m}{s}\right)^{2}}{6.67430 \cdot 10^{-11} \frac{m^{3}}{\text{kg} \cdot \text{s}^{2}} \cdot 1.98849 \cdot 10^{30} \text{ kg}}\right)^{-1} \simeq \frac{1.71349 \cdot 10^{11} \text{ m}}{2} = \frac{1.7134$$

perciò la nuova distanza di Werewolf al perielio è:

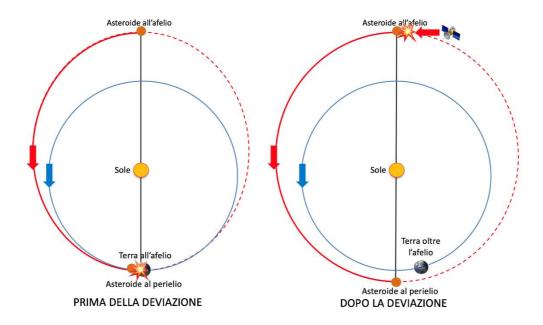
$$d_W' \ = 2 a_W' - D_W = 2 \cdot 1.14539 \ \text{UA} - 1.27376 \ \text{UA} = \ 1.01702 \ \text{UA} \, .$$

In questo modo la distanza dw. T tra Werewolf al perielio e il centro della Terra all'afelio diventa:

$$d_{W-T} = \, d_W' - D_T = 1.01702 \, \, \text{UA} - 1.01673 \, \, \text{UA} = 0.00029 \, \, \text{UA} \simeq 43383 \, \, \text{km} \simeq 6.8 \, \, \text{R}_T \, .$$

La distanza dalla superficie sarà di 5.8 raggi terrestri, sufficiente a garantire un passaggio ravvicinato in sicurezza.

c) In seguito all'impatto, il semiasse maggiore dell'orbita di Werewolf aumenta, ma l'eccentricità diminuisce (e'w = 0.11207). Perciò, se prima l'orbita di Werewolf era esternamente tangente a quella della Terra, ora le due orbite non si intersecano più fra di loro, anche grazie al fatto che la linea degli apsidi non è cambiata. Inoltre, in seguito all'aumento del semiasse maggiore, anche il periodo orbitale aumenta. Prima dell'impatto, il periodo orbitale di Werewolf era T = (1.14525)^{3/2} = 1.22560 anni, mentre dopo è aumentato a 1.22583 anni. Perciò, se prima l'asteroide era esattamente sincronizzato per arrivare all'appuntamento con la Terra, ora arriverà al perielio in ritardo di (1.22583-1.22560)/2 anni = 3629 s, cioè oltre un'ora più tardi dopo che la Terra sarà passata all'afelio e se ne sarà allontanata, viaggiando a 29.3 km/s, di ben 106333 km = 16.6 R_T! Potremo veramente dire di avere salvato la Terra.



Nota: le orbite dei due disegni non sono in scala.

3. Discesa libera su Marte

Il campione di sci Massimo D. Slivello sta eseguendo una discesa libera dal Mons Olympus, la montagna più alta su Marte, che a causa di un inverno marziano particolarmente rigido è magnificamente coperta di ghiaccio secco. La pista è perfettamente rettilinea e a pendenza costante, con una lunghezza di 610 km e un dislivello di 24.8 km. Assumete che la velocità iniziale sia zero, trascurate l'attrito degli sci con la pista e la resistenza della tenuissima atmosfera marziana. Quanto tempo impiega il signor D. Slivello a percorrere la pista e quale velocità (in km/h) raggiunge il traguardo?

Soluzione

Trascuriamo la variazione di accelerazione di gravità tra la superficie di Marte e la cima del Mons Olympus e calcoliamo l'accelerazione di gravità $\mathbf{g}_{\mathbf{M}}$ su Marte:

$$g_M = \frac{G \cdot M_M}{R_M^2} = \frac{6.674 \cdot 10^{-11} \frac{m^3}{s^2 \cdot kg} \cdot \ 6.417 \cdot 10^{23} \ kg}{(3.397 \cdot 10^6 \ m)^2} \simeq 3.711 \ \frac{m}{s^2}.$$

La componente dell'accelerazione di gravità parallela alla pista \mathbf{g} = è:

$$g_{=} = g_{M} \cdot \frac{h}{L} = 3.711 \frac{m}{s^{2}} \cdot \frac{24.8 \text{ km}}{610 \text{ km}} \simeq 0.151 \frac{m}{s^{2}}.$$

La legge del moto uniformemente accelerato risulta:

$$s = \frac{1}{2} \cdot g_{=} \cdot t^{2} ,$$

dove s indica lo spazio percorso. Il tempo t necessario per percorrere la pista è quindi:

$$t = \sqrt{\frac{2 \cdot s}{g_{=}}} = \sqrt{\frac{2 \cdot 6.10 \cdot 10^{5} \; m}{0.151 \; m \cdot s^{-2}}} \simeq \sqrt{8.08 \cdot 10^{6} \; s^{2}} \simeq 2.84 \cdot 10^{3} \; s \simeq 47.3 \; min \; ,$$

e la velocità v raggiunta al traguardo è:

$$v = g_{=} \cdot t = 0.151 \frac{m}{s^{2}} \cdot 2.84 \cdot 10^{3} \text{ s} \simeq 429 \frac{m}{s} \simeq 1.54 \cdot 10^{3} \frac{\text{km}}{\text{h}}$$

4. Il pianeta attorno alla stella di Barnard

Nel 2024 è stato scoperto un pianeta intorno alla stella di Barnard (Barnard b). La scoperta è stata possibile grazie allo spettrografo ESPRESSO del Very Large Telescope, che ha rilevato un'oscillazione della velocità radiale della stella con un periodo pari a 3.1533 giorni e un'ampiezza massima di 0.545 m/s. La massa della stella di Barnard è 0.1600 M_{\odot} . Assumete l'orbita del pianeta Barnard b circolare e giacente su un piano allineato alla linea di vista e calcolate la sua massa.

Soluzione

Detti **T** il periodo di rivoluzione del pianeta, che corrisponde al periodo dell'oscillazione della velocità radiale della stella, e **M**s la massa della stella, calcoliamo il raggio a dell'orbita del pianeta (che coincide con il semiasse maggiore) applicando la III legge di Keplero:

$$a = \sqrt[3]{\frac{G \cdot M_S \cdot T^2}{4 \cdot \pi^2}} \simeq \sqrt[3]{\frac{6.674 \cdot 10^{-11} \frac{m^3}{s^2 \cdot kg} \cdot 3.182 \cdot 10^{29} \cdot kg \cdot (2.724 \cdot 10^5 \; s)^2}{39.48}} \\ \simeq 3.418 \cdot 10^9 \; m \\ \simeq 3.418 \cdot 10^9 \; m \\ \simeq 3.418 \cdot 10^6 \; km \; .$$

La velocità orbitale v del pianeta, relativa alla stella, è data da:

$$v = \frac{2 \cdot \pi \cdot a}{T} = \frac{6.283 \cdot 3.418 \cdot 10^9 \; m}{2.724 \cdot 10^5 \; s} \simeq 78.82 \cdot 10^3 \; \frac{m}{s} \simeq 78.82 \; \frac{km}{s} \, .$$

Definiamo V_P e V_S le velocità orbitali rispettivamente del pianeta e della stella attorno al centro di massa e M_P la massa del pianeta. In un sistema a due corpi le velocità orbitali dei due corpi, rispetto al centro di massa del sistema, sono inversamente proporzionali alle rispettive masse:

$$v_P: v_S = M_S: M_P$$
.

Applicando la proprietà del comporre otteniamo

$$(v_P + v_S): v_S = (M_S + M_P): M_P$$
.

Poiché stella e pianeta si muovono in direzioni opposte, la somma delle due velocità rispetto al centro di massa è esattamente la velocità del pianeta rispetto alla stella:

$$v_P + v_S = v$$
,

e possiamo approssimare:

$$M_S + M_P \simeq M_S$$

da cui

$$v: v_s \simeq M_s: M_p$$
.

Otteniamo così la massa del pianeta:

$$M_P \simeq \frac{M_S \cdot v_S}{v} \simeq 3.182 \cdot 10^{29} \; \text{kg} \cdot \frac{0.545 \; \frac{m}{s}}{78.82 \cdot 10^3 \; \frac{m}{s}} \simeq 2.20 \cdot 10^{24} \; \text{kg} \, .$$

5. Il cielo notturno dentro M13

La figura a fianco mostra l'ammasso globulare M13, il cui diametro apparente è 23.0' e la cui distanza è 7.7 kpc. Si stima che M13 contenga $6.4 \cdot 10^5$ stelle. Supponete per semplicità che M13 sia sferico, che le stelle siano distribuite uniformemente nel suo volume e che siano tutte uguali al Sole. Determinate quale sarebbe la magnitudine integrata dell'ammasso se venisse osservato da un pianeta al suo centro.

Suggerimento: suddividete M13 in gusci sferici di spessore Δr , a distanza r dal centro, e sommate i rispettivi contributi.

Soluzione

Ognuna delle stelle di M13 ha luminosità \mathbf{L}_{\odot} e si trova a una distanza \mathbf{r} variabile dal centro, quindi il flusso luminoso di ciascuna stella sul pianeta centrale è dato da:

$$F_0(r) = \frac{L_{\odot}}{4 \cdot \pi \cdot r^2}.$$

Consideriamo un guscio sferico di raggio \mathbf{r} e spessore $\Delta \mathbf{r}$: il flusso totale proveniente da questo guscio, che contiene $4 \cdot \pi \cdot \mathbf{r}^2 \cdot \Delta \mathbf{r} \cdot \rho_{M13}$ stelle, e diretto al pianeta centrale, è

$$F(r) = \frac{L_{\odot}}{4 \cdot \pi \cdot r^{2}} \cdot 4 \cdot \pi \cdot r^{2} \cdot \Delta r \cdot \rho_{M13} = L_{\odot} \cdot \rho_{M13} \cdot \Delta r.$$

Detto \mathbf{R} il raggio di M13, sommando tutti i flussi provenienti da tutti i gusci, da $\mathbf{r} = 0$ fino a $\mathbf{r} = \mathbf{R} = \mathbf{D}/2$, e indicando con \mathbf{N}_{M13} il numero totale di stelle contenute in M13, otteniamo:

$$\begin{split} F_{tot} &= F(r_1) + F(r_2) + \dots + F(R_{M13}) = \ L_{\odot} \cdot \rho_{M13} \cdot (\Delta r_1 + \Delta r_2 + \dots) = L_{\odot} \cdot \rho_{M13} \cdot R_{M1} = \\ &= \frac{L_{\odot} \cdot N_{M13}}{\frac{4}{3} \cdot \pi \cdot R_{M13}^3} \cdot R_{M13} = 3 \cdot N_{M13} \cdot \frac{L_{\odot}}{4 \cdot \pi \cdot R_{M13}^2}. \end{split}$$

Passiamo alle magnitudini:

$$m_{TOT} = -2.5 \cdot \log F_{tot} = -2.5 \cdot \log (3 \cdot N_{M13}) - 2.5 \cdot \log \frac{L_{\odot}}{4 \cdot \pi \cdot R_{M13}^2}$$

L'ultimo termine della formula è la magnitudine del Sole visto da una distanza pari al raggio di M13:

$$R_{M13} = 7.7 \cdot 10^3 \text{ pc} \cdot \tan \frac{23.0'}{2} \approx 26 \text{ pc}.$$

Usiamo la formula di Pogson:

$$\begin{split} m_{TOT} = \ -2.5 \cdot \log \left(3 \cdot N_{\text{M13}} \right) \ + M_{\odot} + 5 \cdot \log R_{\text{M13}} \ - 5 \\ \\ m_{TOT} \simeq \ -2.5 \cdot \log \left(1.9 \cdot 10^6 \right) \ + 4.83 + 5 \cdot \log 26 \ - 5 \simeq -8.8 \,. \end{split}$$

Nota: questa magnitudine integrata è in realtà distribuita su tutto il cielo e corrisponde a un "chiarore" diffuso certamente non abbagliante (sarebbero circa 12 mag/arcmin²). Ovviamente, visto che le stelle sono molto più concentrate al centro, la luminosità reale potrebbe essere ben superiore.