

XXIII Campionati Italiani di Astronomia

Finale Nazionale - 7 maggio 2025

Prova Teorica - Categoria Junior 2

1. Impatto sulla Luna

Osservate l'impatto di un asteroide al centro della faccia visibile della Luna alle 23h 42m 32.1s. La Luna è allo zenit e all'apogeo. A che ora è avvenuto l'impatto dell'asteroide sulla Luna?

Soluzione:

Dobbiamo calcolare il tempo impiegato dalla luce per percorrere la distanza **d** tra la superficie della Luna (dove è avvenuto l'impatto) e la superficie della Terra (da dove osserviamo l'impatto), quando la Luna si trova all'apogeo.

La distanza d_{Luna} tra il centro della Luna all'apogeo e il centro della Terra è:

$$d_{Luna} = a_{Luna} \cdot (1 + e_{Luna}) = 3.844 \cdot 10^5 \text{ km} \cdot (1 + 0.0549) \approx 4.055 \cdot 10^5 \text{ km}$$
.

Poiché la Luna è allo zenit il centro della Terra, l'osservatore, il punto di impatto e il centro della Luna sono allineati. Quindi dalla distanza della Luna dobbiamo sottrarre il raggio della Terra e quello della Luna:

$$d = d_{Luna} - R_{Terra} - R_{Luna} = 4.055 \cdot 10^5 \ km - 6.378 \cdot 10^3 \ km - 1.738 \cdot 10^3 \ km = 3.974 \cdot 10^5 \ km \ .$$

Il tempo t impiegato dalla luce per percorrere tale distanza è:

$$t = \frac{d}{c} = \frac{3.974 \cdot 10^5 \text{ km}}{2.998 \cdot 10^5 \text{ km} \cdot \text{s}^{-1}} \approx 1.326 \text{ secondi}.$$

L'impatto è quindi avvenuto 1.326 secondi prima dell'ora in cui viene osservato. Considerando che l'ora dell'osservazione è nota con precisione al decimo di secondo, l'impatto è avvenuto alle 23h 42m 30.8s.

2. Le coordinate di Arturo

Urania, il pastore abruzzese mascotte della finale, osserva da Teramo (ϕ = 42° 39' N, λ = 13° 42' E) la stella Arturo (α = 14h 16m 49s, δ = 19° 03' 00"). Calcolate le coordinate altazimutali di Arturo sapendo che al momento dell'osservazione il tempo siderale a Greenwich è 13h 22m 01s.

Soluzione

La differenza di longitudine $\Delta\lambda$ tra Teramo e Greenwich è:

$$\Delta \lambda = \lambda_{Teramo} - \lambda_{Greenwich} = 13^{\circ} 42' - 0^{\circ} 0' = 13^{\circ} 42'$$
,

che convertita in tempo è:

$$\Delta \lambda : 360^{\circ} = \Delta \lambda \text{ (tempo)} : 24 \text{ ore}$$

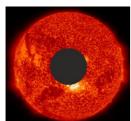
$$\Delta\lambda$$
 (tempo) = $\Delta\lambda \cdot 24$ ore / 360° = 54 m $48s$.

Il tempo siderale locale TSL_{Teramo} a Teramo al momento dell'osservazione di Arturo è:

$$TSL_{Teramo} = TSL_{Greenwich} + \Delta\lambda$$
 (tempo) = 13h 22m 01s + 54m 48s = 14h 16m 49s.

Notiamo che il tempo siderale locale è uguale all'ascensione retta di Arturo quindi Arturo è al meridiano e il suo azimut è 0°. Arturo culmina a sud dello zenit, quindi la sua altezza $\bf h$ sull'orizzonte al momento del passaggio al meridiano (altezza massima) è $\bf h=90^{\circ}$ - $\phi+\delta=66^{\circ}$ 24'.

3. Eclissi di Sole dallo spazio



Un satellite in orbita intorno al Sole ha fotografato il transito della Terra sul disco solare. Sull'immagine il diametro della Terra è un terzo di quello del Sole. Considerate tutte le orbite circolari e calcolate la distanza tra la Terra e il satellite.

Nota: per la risoluzione dell'esercizio utilizzate l'approssimazione sen $(x) \simeq x$.

Soluzione

Poiché la Terra viene vista interposta tra il satellite e il Sole, detti a_T la distanza Terra-Sole, d la distanza tra il satellite e la Terra, R_S il raggio del Sole, θ_S il diametro angolare del Sole

osservato dalla distanza del satellite a_T+d, vale la relazione:

$$\operatorname{sen} \frac{\theta_{S}}{2} = \frac{R_{S}}{a_{T} + d}.$$

Analogamente, detto \mathbf{R}_T il raggio terrestre e $\mathbf{\theta}_T$ il diametro angolare della Terra osservata dalla distanza del satellite \mathbf{d} , vale la relazione:

$$\operatorname{sen} \frac{\theta_{\mathrm{T}}}{2} = \frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{d}} .$$

Considerato che la Terra viene vista proiettata sul Sole, il satellite si trova a una distanza maggiore di 1 UA. Quindi il diametro apparente del Sole è sicuramente minore di 32' e possiamo utilizzare le seguenti due approssimazioni:

$$\theta_S \simeq \frac{2 \cdot R_S}{a_T + d}$$
,

$$\theta_{\rm T} \simeq \frac{2 \cdot {\rm R}_{\rm T}}{{\rm d}}$$
.

Sappiamo che $\theta_S = 3\theta_T$:

$$\frac{2 \cdot R_S}{a_T + d} = 3 \cdot \frac{2 \cdot R_T}{d},$$

da cui

$$R_S \cdot d = 3 \cdot R_T \cdot a_T + 3 \cdot R_T \cdot d$$

$$d = \frac{3 \cdot R_T \cdot a_T}{R_S - 3R_T} = \frac{3 \cdot 6.378 \, \cdot 10^3 \; km \cdot 149.6 \cdot 10^6 \; km}{6.955 \cdot 10^5 \; km - 3 \cdot 6.378 \cdot 10^3 \; km} \simeq 4.232 \cdot 10^6 \; km \, .$$

4. Allineamenti ricorrenti

Due pianeti P_1 e P_2 percorrono orbite circolari complanari attorno alla stessa stella e si trovano allineati ogni 3 rivoluzioni complete di P_1 e 2 rivoluzioni complete di P_2 . Sapendo che la distanza di P_1 dalla stella è $3.15 \cdot 10^9$ km, calcolate la distanza di P_2 dalla stella.

Soluzione

Definiamo T_1 e T_2 i periodi di rivoluzione dei due pianeti attorno alla stella e d_1 e d_2 le loro distanze dalla stella.

Sappiamo che i pianeti sono allineati ogni 3 rivoluzioni complete di P₁ e 2 rivoluzioni complete di P₂, da cui:

$$3 \cdot T_1 = 2 \cdot T_2$$

$$\frac{T_1}{T_2} = \frac{2}{3}.$$

Dalla terza legge di Keplero:

$$\frac{T_1^2}{d_1^3} = \frac{T_2^2}{d_2^3}$$

$$\frac{d_1^3}{d_2^3} = \frac{T_1^2}{T_2^2} = \left(\frac{2}{3}\right)^2 = \frac{4}{9},$$

da cui:

$$d_2 = d_1 \cdot \sqrt[3]{\frac{9}{4}} \simeq 3.15 \cdot 10^9 \text{ km} \cdot 1.31 \simeq 4.13 \cdot 10^9 \text{ km}.$$

Nota: il problema può essere risolto anche utilizzando la formula del periodo sinodico.

5. La scintillazione

La scintillazione è il fenomeno per cui la luminosità di una sorgente, a causa della turbolenza atmosferica, viene vista variare nel tempo in modo veloce e irregolare. Essa può essere descritta con la formula di Pogson nella forma

$$m = m_0 - 2.5 \cdot log \frac{\tau \cdot F}{F_0} ,$$

dove m è la magnitudine apparente della sorgente osservata dalla superficie terrestre, m_0 è la magnitudine apparente fuori dall'atmosfera terrestre e τ è la trasparenza dell'atmosfera in un dato istante. Quest'ultima è un parametro che assume valori tra 0 e 1 ed esprime la frazione di flusso, proveniente dalla sorgente, che riesce ad attraversare l'atmosfera e raggiungere l'osservatore. Calcolate il valore della trasparenza quando la magnitudine di una stella viene vista variare di 0.4.

Soluzione

Si tratta di invertire la formula di Pogson, considerando la magnitudine senza effetti atmosferici (ovvero "senza trasparenza", con $\tau = 1$, che chiamiamo "indisturbata") e poi quella che invece contiene la trasparenza:

$$m_{indisturbata} = m_0 - 2.5 \cdot log \frac{F}{F_0}$$

$$m = m_0 - 2.5 \cdot \log \frac{\tau \cdot F}{F_0}.$$

La loro differenza corrisponde alla variazione Δm cercata:

$$\Delta m = m - m_{indisturbata} = -2.5 \cdot \log \tau$$

da cui, per $\Delta m = 0.4$:

$$\tau = 10^{-0.4 \cdot \Delta m} = 10^{-0.4 \cdot 0.4} \simeq 0.69$$
.