
OLIMPIADI ITALIANE DI ASTRONOMIA 2019

Gara Interregionale – 14 febbraio

Categoria Junior 1

1. Le leggi di Keplero. Completate il testo

La I¹ legge afferma che le orbite dei pianeti del Sistema Solare sono delle (1) ______ e che il (2) _____ occupa uno dei due fuochi. La II¹ legge afferma che il segmento che unisce un pianeta al Sole descrive aree uguali in (3) _____ uguali, di conseguenza un pianeta si muove più (4) _____ lungo la sua orbita quando è più vicino al Sole. La III¹ legge afferma che il quadrato del periodo orbitale è proporzionale al cubo della distanza dal Sole; quindi i pianeti esterni hanno periodi orbitali più (5) _____ rispetto ai pianeti interni.

Soluzione.

(1) ellissi, (2) Sole, (3) tempi, (4) velocemente, (5) lunghi

2. Una Terra più grande

Quanto valgono la massa e l'accelerazione di gravità sulla superficie di un pianeta che ha la stessa densità della Terra, ma raggio doppio del raggio terrestre?

Soluzione.

Densità (ρ) e accelerazione di gravità (g) sono date da:

$$\rho = \frac{M}{V} = \frac{3 \cdot M}{4\pi \cdot R^3} \qquad e \qquad g = \frac{G \cdot M}{R^2}$$

Indicando con R il raggio, sappiamo che la densità del pianeta è uguale a quella della Terra ($\rho_P = \rho_T$), mentre il raggio del pianeta è il doppio di quello della Terra ($R_P = 2~R_T$), da cui:

$$\begin{split} \rho_T &= \rho_P \quad \to \quad \frac{3 \cdot M_T}{4 \pi \cdot R_T^3} = \frac{3 \cdot M_P}{4 \pi \cdot R_P^3} \quad \to \quad \frac{M_T}{R_T^3} = \frac{M_P}{R_P^3} \quad \to \quad \frac{M_T}{R_T^3} = \frac{M_P}{8 R_T^3} \quad \to \quad M_P = 8 M_T \cong 4.78 \, \cdot \, 10^{25} \; kg \\ g_P &= \frac{G \cdot M_P}{R_P^2} = \frac{G \cdot 8 M_T}{4 R_T^2} = 2 \cdot \frac{G \cdot M_T}{R_T^2} = 2 \cdot g_T = 2 \cdot 9.81 \; \frac{m}{s^2} \cong 19.6 \; \frac{m}{s^2} \end{split}$$

L'accelerazione di gravità su un pianeta che ha la stessa densità della Terra e raggio doppio del raggio terrestre è il doppio dell'accelerazione di gravità terrestre.

3. Un pianeta con i baffi

Sul pianeta Felix-1534, distante 4000 anni luce dalla Terra, vive una popolazione di gatti che mirano a conquistare la Terra con il sostegno dei gatti terrestri. I gatti felixani inviano una comunicazione radio che arriva alla gattina Karel sulla Terra il 14 febbraio 2019, avvisando che si metteranno in viaggio verso la Terra dopo aver ricevuto la risposta dei gatti terrestri via radio. Considerando che le astronavi dei gatti di Felix-1534 viaggiano a $\frac{1}{100}$ della velocità della luce, se Karel invia immediatamente la risposta, dopo quanto tempo arriveranno sulla Terra i gatti conquistatori?

Soluzione.

Per le comunicazioni vengono utilizzate le onde radio che, come tutte le onde elettromagnetiche, viaggiano alla velocità della luce. Pertanto, quando Karel manda la sua risposta sa che essa impiegherà $T_{risposta} = 4000$ anni per raggiungere Felix-1534. Se i gatti partono non appena la ricevono, viaggiando a $v = \frac{c}{100}$ impiegheranno per raggiungere la Terra 100 volte più tempo del segnale radio: $T_{viaggio} = 100 \cdot 4000 = 400 \cdot 10^3$ anni. Quindi Karel si aspetta che i gatti conquistatori arrivino sulla Terra dopo $T = T_{risposta} + T_{viaggio} = 4000 + 400000$ anni = 404000 anni. Nota: a velocità $v = \frac{c}{100}$ si possono trascurare gli effetti relativistici.

4. Una nuova cometa

È stato annunciato l'arrivo di una cometa la cui declinazione è $\delta = -20^{\circ}$. Può un osservatore che si trova alla latitudine $\varphi = 80^{\circ}$ N osservare la cometa?

Soluzione.

L'altezza massima sull'orizzonte che può raggiungere un oggetto celeste è data da:

$$h_{\text{max}} = 90^{\circ} - \phi + \delta \tag{1}$$

Per la cometa e l'osservatore avremo:

$$h_{max} = 90^{\circ} - \phi + \delta = 90^{\circ} - 80^{\circ} - 20^{\circ} = -10^{\circ}$$

Da una località a latitudine $\varphi=80^\circ$ la nuova cometa rimane sempre sotto l'orizzonte locale e non è quindi osservabile.

Ponendo $h_{max}=0$ nell'equazione (1), vediamo che affinché un oggetto con declinazione δ risulti, nel corso del suo moto diurno, visibile da una località con latitudine ϕ deve essere:

$$\delta > \phi - 90^{\circ}$$

ma essendo $\phi - 90^{\circ} = -10$, ricaviamo che la cometa rimane sempre sotto l'orizzonte dell'osservatore.

5. Superman o Apollo?

Si sostiene che Superman sia più veloce di un proiettile. Poiché un proiettile ha una velocità di circa 700 m/s, supponiamo che Superman possa volare a 1000 m/s. A questa velocità, quante ore impiegherebbe Superman per:

- 1. compiere un giro completo attorno all'equatore della Terra (assumendola sferica)?
- 2. raggiungere la Luna al perigeo?

Considerando che gli astronauti delle missioni Apollo hanno impiegato circa 3 giorni per raggiungere la Luna, erano più veloci gli astronauti delle missioni Apollo o Superman?

Soluzione.

La velocità di Superman è: $v_{superman} = 1000 \text{ m/s} = 1 \text{ km/s} = 3600 \text{ km/h}$

1. La circonferenza terrestre all'equatore (C_{equatore}) è:

$$C_{\text{equatore}} = 2\pi \cdot R_T = 2\pi \cdot 6378 \text{ km} \approx 40070 \text{ km}$$

da cui

$$t_{equatore} = \frac{C_{equatore}}{v_{superman}} = \frac{40070 \text{ km}}{3600 \text{ km/h}} \cong 11.13 \text{ h}$$

2. Dati semiasse maggiore (a) ed eccentrità (e) dell'orbita lunare, la distanza della Luna al perigeo (L_{Luna}) è:

$$d_{Luna} = a(1-e) = 384.4 \cdot 10^3 \; km \; \cdot (1-0.0549) = 384.4 \cdot 10^3 \; km \; \cdot 0.9451 = 363.3 \cdot 10^3 \; km$$

da cui

$$t_{Luna} = \frac{d_{Luna}}{v_{superman}} = \frac{363.3 \cdot 10^3 \text{ km}}{3600 \text{ km/h}} \cong 100.9 \text{ h} \cong 4.204 \text{ giorni}$$

Superman ha bisogno di poco più di 11 ore per compiere un giro attorno alla Terra e di poco più di 4 giorni per raggiungere la Luna al perigeo. Le missioni Apollo hanno raggiunto la Luna in circa 3 giorni: possiamo quindi dire che gli astronauti delle missioni Apollo hanno viaggiato più veloci di Superman!

Olimpiadi Italiane di Astronomia 2019

Gara Interregionale – 14/15 febbraio 2019

Alcuni dati di interesse

Tabella 1 – Sole

Raggio medio	695475 km	Età stimata	4.57 · 10 ⁹ anni
Massa	1.99 · 10 ³⁰ kg	Classe spettrale	G2 V
Temperatura della fotosfera	5778 K	Posizione nel diagramma HR	Sequenza Principale
Magnitudine apparente dalla Terra	- 26.74	Distanza media dal centro galattico	27000 anni luce
Magnitudine assoluta	+ 4.83	Periodo di rivoluzione intorno al centro galattico	2.5 · 10 ⁸ anni

Tabella 2 – Sistema Solare

	Mercurio	Venere	Terra	Luna	Marte	Giove	Saturno	Urano	Nettuno
Raggio medio (km)	2440	6052	6378	1738	3397	71493	60267	25557	24766
Massa (kg)	$3.30 \cdot 10^{23}$	4.87·10 ²⁴	5.97·10 ²⁴	$7.35 \cdot 10^{22}$	6.42·10 ²³	1.90·10 ²⁷	5.69·10 ²⁶	8.68·10 ²⁵	1.02·10 ²⁶
Semiasse maggiore dell'orbita (km)	57.91·10 ⁶	108.2·10 ⁶	149.6·10 ⁶	384.4·10³	227.9·10 ⁶	778.4·10 ⁶	1.427·10 ⁹	2.871·10 ⁹	4.498·10 ⁹
Periodo orbitale	87.969 ^g	224.70 ^g	365.26 ^g	27.322 ^g	686.97 ^g	11.863 ^a	29.447 ^a	84.017 ^a	164.79 a
Eccentricità dell'orbita	0.2056	0.0068	0.0167	0.0549	0.0934	0.0484	0.0542	0.0472	0.0086
Tipo	roccioso	roccioso	roccioso	roccioso	roccioso	gassoso	gassoso	gassoso	gassoso

Tabella 3 – Area della superficie e volume per figure geometriche notevoli

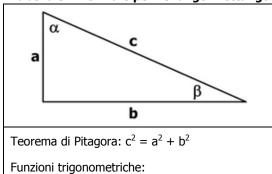

area ellisse	area superfice sfera	area superfice cilindro	volume sfera	volume cilindro	
$\pi \cdot a \cdot b$	$4\pi \cdot R^2$	2π · R (h+R)	(4/3) π · R ³	$\pi \cdot R^2 \cdot h$	

Tabella 4 – Costanti fisiche

 $a = c sen \beta$

Nome	Simbolo	Valore	Unità di misura
Costante di Stefan-Boltzmann	σ	5.670 · 10 ⁻⁸	W ⋅ m ⁻² ⋅ K ⁻⁴
Velocità della luce nel vuoto	С	299792	km · s ⁻¹
Costante di Gravitazione Universale	G	6.674 · 10 ⁻¹¹	$\mathrm{m^3 \cdot kg^{\text{-}1} \cdot s^{\text{-}2}}$
Accelerazione di gravità sulla Terra al livello del mare	g	9.807	m·s ⁻²

Tabella 5 – Formule per i triangoli rettangoli

 $a = c \cos \alpha$

Tabella 6 - Fattori di conversione

1 parsec =
$$30857 \cdot 10^9$$
 km = 3.262 anni luce = 206265 UA
1 radiante $\cong 57^\circ$ 17' 45" $\cong 206265$ "
M (Mega) = 10^6
G (Giga) = 10^9
 μ (micro) = 10^{-6}
n (nano) = 10^{-9}
Å (angstrom) = 10^{-10} m

1 anno luce = $9461 \cdot 10^9$ km = 0.3066 parsec = 63242 UA

Nota: I valori numerici presenti nelle tabelle sono in notazione scientifica.

 $a = b \tan \beta$