
Campionati Italiani di Astronomia                     
Corso di preparazione alla Gara Interregionale 

Categorie Senior/Master - Soluzioni lezione 1 

1. La cometa di Halley dista dal Sole 8.767 · 1010 m al perielio e 5.248 · 1012 m all’afelio. Il modulo della sua
velocità orbitale al perielio è di 54.6 km/s. Calcolare la sua velocità all’afelio in km/s e in m/s. Sapendo che
l’ultimo passaggio della cometa di Halley al perielio si è verificato il 9 febbraio 1986, calcolate l’anno del più
prossimo ritorno al perielio.

Soluzione

Dette 𝑫𝑨, 𝑽𝑨, 𝑫𝑷 e 𝑽𝑷 le distanze e le velocità della cometa all’afelio e al perielio, dalla II legge di Keplero
sappiamo che:

VA  ∙  DA =  VP  ∙  DP 
quindi: 

Va =  
Dp

Da
Vp =  

8.767∙ 1010 m

5.248 ∙  1012 m
∙ 54.6 

km

s
≃ 0.912 

km

s
= 912 

m

s

Note le distanze all’afelio e al perielio ricaviamo il semiasse maggiore a dell’orbita: 

a =  
Da +   Dp

2
=  

8.767 ∙  1010 m +  5.248 ∙  1012 m 

2
 ≃ 2.668 ∙  1012 m ≃ 17.83 UA 

Poiché la cometa di Halley orbita intorno al Sole, il suo periodo di rivoluzione T  in anni vale: 

 T = √𝑎3 =  √17.833 ≃ 75.29 𝑎𝑛𝑛𝑖  

L’anno A del ritorno al perielio (arrotondando all’intero più prossimo) sarà quindi: 

𝐴 = 1986 + 75 = 2061 
Nota. 
Il periodo orbitale della Halley non è perfettamente costante a causa dell’influenza gravitazionale dei pianeti 
(in particolare Giove). La data attualmente prevista per il prossimo passaggio al perielio è il 29 luglio 2061. 

2. L’orbita di un asteroide ha semiasse maggiore di 7.143 UA e semiasse minore di 2.635 UA. Calcolate
l’eccentricità dell’orbita e la distanza dell’asteroide dal Sole al perielio e all’afelio. Supponendo che
l’asteroide orbiti in prossimità del piano dell’eclittica, quali sono i pianeti con cui potrebbe entrare in
collisione? Questo asteroide fa parte della “Fascia principale degli Asteroidi” ? Includete nella soluzione
uno o più disegni, possibilmente in scala, con le orbite dei pianeti e dell’asteroide.

Soluzione

Dalle dimensioni dei semiassi maggiore a e minore b 

ricaviamo l’eccentricità 𝒆: 

𝑒 =  √1 − (
 b2

 a2
)  =  √1 −  (

6.943

51.02
) = 0.9295 

Le distanze dal Sole al perielio 𝒅𝑷 e all’afelio 𝒅𝑨 valgono: 

dP = a (1 − e)  ≃ 0.5036 UA

dA = a (1 + e)  ≃ 13.78 UA

La distanza dei pianeti dal Sole in UA è circa: Mercurio = 0.4, Venere = 0.7, Terra = 1, Marte = 1.5, 
Giove = 5.2, Saturno = 9.5, Urano = 19.6, Nettuno = 30 



 

L’asteroide potrebbe incrociare le orbite dei pianeti con 

distanza 𝑫 dal Sole compresa nell’intervallo:  

0.5036 <  D < 13.78 

cioè Venere, Terra, Marte, Giove e Saturno. La “Fascia 
principale degli Asteroidi” è compresa tra le orbite di Marte 
e di Giove, l’asteroide non ne fa parte. 

 
3. L’orbita di un asteroide ha semiasse maggiore e minore rispettivamente pari a 7.143 UA e 2.635 UA. Si 

determini il periodo orbitale dell’asteroide e il valore del rapporto tra le velocità orbitali all’afelio e al 
perielio. Da quali parametri orbitali dipende il valore di detto rapporto? 
 

Soluzione   
Detto a il semiasse maggiore dell’orbita, il periodo orbitale T dell’asteroide in anni vale: 

𝑇 =  √𝑎3 ≃  √364.5  ≃ 19.09 𝑎𝑛𝑛𝑖 

L’eccentricità e dell’orbita vale:  

  𝑒 = √1 − (
 𝑏2

 𝑎2)  =  √1 −  (
6.943 𝑈𝐴2

51.02 𝑈𝐴2)  ≃ 0.9295 

Dette 𝑫𝑨, 𝑽𝑨, 𝑫𝑷 e 𝑽𝑷 le distanze e le velocità dell’asteroide all’afelio e al perielio, dalla II legge di Keplero 
sappiamo che: 

VA  ∙  DA =  VP  ∙  DP 
quindi: 

𝑉𝐴

𝑉𝑃
=  

𝐷𝑃

𝐷𝐴
=  

𝑎 (1 − 𝑒)

𝑎 (1 + 𝑒)
=  

1 − 𝑒

1 + 𝑒
≃ 0.03654 = 3.654 ⋅  10−2  

Quindi il rapporto delle velocità dipende unicamente dall’eccentricità dell’orbita. 

 
4. Una cometa descrive un’orbita ellittica con eccentricità di 0.921 e distanza dal Sole al perielio di 0.451 UA. 

Calcolate quando tempo impiega per percorrere ognuna delle due semi-orbite separate dall’asse minore 
dell’ellisse. 
 

Soluzione 

Detta 𝒅𝑷 la distanza al perielio ed 𝒆 l’eccentricità dell’orbita, i semiassi 𝒂 e 𝒃 valgono: 

a =  
dP

(1 − e)
≃  

0.451

0.079
 ≃  5.71 UA                          b =  a √1 −  e2 ≃ 5.71 ∙ 0.390 ≃ 2.23 UA 

Il periodo orbitale T in anni vale:  

T =  √a3 ≃  √186 ≃ 13.6 anni 

 
Rappresentazione non in scala 

L’area totale 𝑨𝒆𝒍𝒍𝒊𝒔𝒔𝒆 dell’orbita è data dalla relazione: 

Aellisse =  π a b ≃ 40.0 UA2 

La distanza 𝒄 del fuoco che contiene il Sole dal 
centro dell’orbita della cometa vale:  

c = a ∙ e ≃   5.71 UA ∙ 0.921 ≃ 5.26 UA 

L’area delle due semi-orbite è: 

A1 =  
Aellisse

2
+ c ∙ b ≃ 31.7 UA2    

A2 =  
Aellisse

2
− c ∙ b ≃ 8.3 UA2    

 



Detta ∆𝑻𝒏 una qualsiasi frazione del periodo orbitale e 𝑨𝒏 l’area spazzata dal raggio vettore nell’intervallo 

∆𝑻𝒏 , dalla II legge di Keplero sappiamo che: 

∆Tn : An = T :  Aellisse 

da cui, detti ∆𝑻𝟏 e ∆𝑻𝟐  i tempi impiegati per percorrere le due semi-orbite, si ricava:  

∆T1 =  
A1 ∙ T

Aellisse
 ≃  

31.7  UA2 ∙ 13.6 anni

 40.0  UA2
 ≃ 10.8 anni 

∆T2 =  
A2 ∙ T

Aellisse
 ≃  

8.3 UA2 ∙ 13.6 anni 

 40.0 UA2
 ≃ 2.8 anni 

Nota. 
Soluzione alternativa  

∆T1

∆T2
=  

A1

A2
          

∆T1

∆T2
+ 1 =  

A1

A2
+ 1           

∆T1+ ∆T2

∆T2
=  

A1+ A2

A2
          

T

∆T2
=  

A

A2
          ∆T2 =  

A2 ∙ T

A
 

A2 =  
π a b

2
− a ∙ e ∙ b =  (

π

2
− e) ab       ∆T2 =  

A2 ∙ T

A
=  

(
π

2
−e)ab ∙ T

 π a b
=  (

1

2
−  

e

π
)  T ≃ 2.8 anni     

∆T1 =  
A1 ∙ T

A
=  

(
π
2 + e) ab ∙  T

 π a b
=  (

1

2
+  

e

π
)  T ≃ 10.8 anni 

 
5. L'Asteroide 704 “Interamnia’’, scoperto nel 1910, percorre in 5.35 anni un’orbita stabile intorno al Sole, 

molto prossima al piano dell’eclittica, con eccentricità pari a 0.151. Con l’ausilio di un disegno si dica se 
l’asteroide costituisce una minaccia per la Terra, ovvero se può collidere con essa. Stimate infine la sua 
distanza minima dal nostro pianeta. 
 

Soluzione 

 

Detto T il periodo di rivoluzione, il semiasse maggiore a 
dell’orbita di 704 Interamnia in UA vale: 

𝑎 =  √𝑇23
= √ 5.3523

 ≃ 3.06 𝑈𝐴 

Nota l’eccentricità e, il semiasse minore b dell’orbita si 
ricava dalla relazione:  

𝑏 = 𝑎 √1 −  𝑒2 ≃ 3.06 𝑈𝐴 ∙  √1 − 0.0228 ≃ 3.02 𝑈𝐴  

La distanza c del Sole rispetto all’intersezione dei semiassi è 

data da:  

       𝑐 =  √𝑎2 −  𝑏2 ≃ √3.062 −  3.022 ≃ 0.493 𝑈𝐴 
 

L’orbita dell’asteroide, sul piano dell’eclittica e stabile, si trova ben all’esterno di quella della Terra, come 
visibile nel disegno qui sopra. Quindi l’asteroide non costituisce una minaccia per il nostro pianeta 

La minima distanza possibile 𝑫𝒎𝒊𝒏 dalla Terra si ha nel caso in cui si verificano contemporaneamente le tre 
seguenti circostanze: asteroide in opposizione, asteroide al perielio, Terra all’afelio. In questa 

configurazione, detti 𝑫𝑨𝒑 la distanza dal Sole dell’asteroide al perielio, aT ed eT semiasse maggiore ed 

eccentricità dell’orbita della Terra e 𝑫𝑻𝒂 la distanza della Terra dal Sole all’afelio, la distanza di Interamnia 
dalla Terra in UA sarebbe:  

𝐷𝑚𝑖𝑛 =  𝐷𝐴𝑝 − 𝐷𝑇𝑎 = 𝑎 (1 − 𝑒) − 𝑎𝑇 (1 +  𝑒𝑇) 

𝐷𝑚𝑖𝑛 ≃ 3.06 𝑈𝐴 (1 − 0.151) − 1 𝑈𝐴 (1 + 0.0167) ≃ 1.58 𝑈𝐴  

 



6. Un satellite artificiale orbita attorno alla Terra su un’orbita ellittica con semiassi maggiore e minore 

rispettivamente pari a 1.522 ∙  104 𝑘𝑚 e 1.321 ∙  104 𝑘𝑚. Calcolate la distanza minima del satellite al 
perigeo e all’apogeo rispetto alla superficie della Terra e il suo periodo di rivoluzione. 
 

Soluzione 
Detti a e b la lunghezza dei due semiassi, l’eccentricità e dell’orbita del satellite è data dalla relazione:  

e = √1 − (
 b2

 a2)  ≃  √1 −  (
1.745 ∙ 108 𝑘𝑚2

2.316 ∙ 108 𝑘𝑚2)  ≃ 0.4965 

Le distanze del satellite dal centro della Terra al perigeo D
P
 e all’apogeo D

A 
valgono quindi: 

DP = a (1 − e) ≃ 7663 km                       DA = a (1 + e) ≃ 2.278 ∙ 104 km   

La distanza minima di un satellite dalla superficie terrestre si ha quando un osservatore lo vede transitare 

allo zenith. Quindi per ottenere la distanza minima nei due casi (𝑯𝑷 e 𝑯𝑨) basta sottrarre il raggio della 
Terra alle distanze all’afelio e al perielio:  

HP =  Dp −  RT ≃ 1285 km                  HA =  DA −  RT ≃ 1.640 ∙ 104 km 

Applicando la III legge di Keplero generalizzata e considerando che la massa del satellite è ovviamente 
trascurabile rispetto a quella della Terra, il periodo di rivoluzione T è dato da:  

𝑇 =  √
4 𝜋2 ∙  𝑎3

𝐺 ∙  𝑀𝑇
≃  √

39.48 ∙  3.526 ∙  1021 𝑚3

 6.674 ∙  10−11 
𝑚3

𝑘𝑔 𝑠2  ∙  5.972 ∙  1024 𝑘𝑔  
 ≃ 

≃  √3.493 ∙  108 𝑠2 ≃ 1.869 ∙  104 𝑠 ≃ 311.5 𝑚𝑖𝑛𝑢𝑡𝑖 ≃ 5 ℎ  12 𝑚𝑖𝑛𝑢𝑡𝑖 
 

7. Un asteroide di forma sferica ha un raggio di 200 km e la sua densità media è pari a quella di Mercurio. 

Calcolate il valore dell’accelerazione di gravità alla superficie dell’asteroide in  𝑚/𝑠2. 
 

Soluzione 

La massa 𝐌 di un corpo, nota la sua densità media 𝛒 e il volume 𝐕 vale: 

M =  ρ V 

In particolare, per un asteroide sferico di raggio 𝐑𝐚, la sua massa 𝐌𝐚 vale: 

Ma =  ρ V =  ρ 
4

3
 π Ra

3 

Il problema si può quindi risolvere calcolando la densità 𝛒 di Mercurio e inserendo il valore ottenuto nella 
formula per il calcolo della massa dell’asteroide.  

In alternativa, detti 𝐑𝐌 e 𝐌𝐌 il raggio e la massa di Mercurio e 𝛒𝐚 e 𝛒𝐌 le densità dell’asteroide e di 
Mercurio, consideriamo il rapporto tra la massa dell’asteroide e quella di Mercurio:   

Ma

MM
=  

ρa   
4
3

π Ra
3

ρM 
4
3 π RM

3
 

Poiché le densità dei due corpi sono uguali avremo infine: 

𝑀𝑎 =  𝑀𝑀 (
𝑅𝑎

𝑅𝑀
)

3

 

𝑀𝑎 ≃ 3.301 ∙  1023𝑘𝑔 (
200 𝑘𝑚

2440 𝑘𝑚
)

3

≃  3.301 ∙  1023𝑘𝑔 ∙ 5.51 ∙  10−4 ≃ 1.82 ∙  1020𝑘𝑔  

Nota la massa possiamo calcolare l’accelerazione di gravità 𝐠𝐚 sulla superficie dell’asteroide: 



𝑔𝑎 =  
𝐺 ∙ 𝑀𝑎

𝑅𝑎
2 ≃  

6.674 ∙   10−11 𝑚3

𝑘𝑔 𝑠2  ∙ 1.82 ∙  1020 𝑘𝑔

(200 ∙  103 𝑚)2
 ≃ 0.304 

𝑚

𝑠2
 

 
8. Supponete di raddoppiare la massa del Sole. Mantenendo inalterato il valore dell’UA, quanto varrebbe il 

nuovo periodo di rivoluzione della Terra? Se invece, mantenendo invariata la massa del Sole, raddoppiasse 
la massa di Mercurio, quale sarebbe il suo nuovo periodo di rivoluzione supponendo invariato il semiasse 
maggiore dell’orbita? 
 

Soluzione 
Scriviamo la III Legge di Keplero indicando con a e T i valori attuali del semiasse maggiore dell’orbita e 

del periodo di rivoluzione della Terra e con 𝑴⊙ e 𝑴𝑻 le masse del Sole e della Terra. Poiché M⊙ ≫ MT: 

a3

T2
=  

G (M⊙ +  MT) 

4 π2
 ≃  

G M⊙ 

4 π2
  

Raddoppiando la massa del Sole e detto 𝑻𝟏 il nuovo periodo di rivoluzione della Terra si ha: 

a3

T1
2 =  

G (2 M⊙ +  MT) 

4 π2
 ≃  

2 G M⊙ 

4 π2
=

G M⊙ 

2 π2
 

Dividendo membro a membro queste due relazioni si ottiene il nuovo periodo di rivoluzione della Terra: 

T1
2

T2 =  
1

2
= 0.5       da cui:      T1 = T √0.5 ≃ 0.7071 𝑎𝑛𝑛𝑖 ≃ 258.3 𝑔 

Ovviamente si può arrivare alla soluzione calcolando direttamente il nuovo periodo di rivoluzione:  

T1 =  √
2 π2 a3 

G  M⊙
≃  √

19.74 ∙ 3.348 ∙  1033 𝑚3

6.674 ∙  10−11 𝑚3

𝑘𝑔 𝑠2 ∙ 1.989 ∙  1030 kg
 ≃ 2.231 ∙  107 s ≃ 258.3 g 

Detti  𝒂𝑴, 𝑻𝑴, e 𝑴𝑴 i valori attuali del semiasse maggiore dell’orbita, del periodo di rivoluzione e della 

massa di Mercurio, raddoppiando la massa il periodo di rivoluzione 𝑻𝟏𝑴 resterebbe invariato, in quanto: 

aM
3

TM
2 =  

G (M⊙ +  MM) 

4 π2
 ≃  

G M⊙ 

4 π2
 

 
aM

3

T1
2 =  

G (M⊙ +   2 MM) 

4 π2
 ≃  

G M⊙ 

4 π2
 

 
9. Calcolate, trascurando l’inclinazione dell’orbita lunare sull’eclittica, la distanza minima della Luna Piena e 

della Luna Nuova dal Sole. Per le eccentricità si assumano i valori: 𝑒𝐿 = 0.05490 per l’orbita della Luna 

attorno alla Terra ed 𝑒𝑇 = 0.01671 per l’orbita della Terra attorno al Sole. 
 

Soluzione 

 

La Luna è Piena quando vista dalla Terra è in 
direzione opposta al Sole. La sua distanza minima dal 

Sole 𝐃𝐦−𝐋𝐏−⨀ si ha quando la Terra è al perielio e la 
Luna Piena al perigeo (vedere il disegno, non in scala, 
a sinistra). Detti aT  e aL i semiassi maggiori delle 
orbite della Terra e della Luna, per la distanza della 

Terra dal Sole al perielio 𝐃𝐓⨀−𝐏 e per la distanza 

della Luna dalla Terra al perigeo 𝐃𝐋𝐓−𝐏  si ha: 

DT⨀−P =  𝑎𝑇 (1 − 𝑒𝑇) ≃ 147.1 ∙  106 𝑘𝑚  

DLT−P =  𝑎𝐿 (1 − 𝑒𝐿) ≃ 363.3 ∙  103 𝑘𝑚  



e quindi: 

Dm−LP−⨀ =  DT⨀−P + DLT−P ≃ 147.5 ∙ 106 𝑘𝑚  

La Luna è Nuova quando si trova nella stessa direzione e dalla stessa parte del Sole rispetto alla Terra. La 

sua distanza minima dal Sole 𝐃𝐦−𝐋𝐍−⨀ si avrà quando la Terra è al perielio e la Luna all’apogeo. Per la 

distanza della Luna dalla Terra all’apogeo 𝐃𝐋𝐓−𝐀  si ha: 

DLT−A =  𝑎𝐿 (1 + 𝑒𝐿) ≃ 405.5 ∙  103 𝑘𝑚 

e quindi:  

Dm−LN−⨀ =  DT⨀−P −  DLT−A ≃ 146.7 ∙ 106 𝑘𝑚 

 
10. Osservate una configurazione planetaria molto particolare, con Venere visibile al tramonto alla massima 

elongazione est e angolarmente vicinissimo (in congiunzione) con Marte. Calcolate la distanza Terra-Marte 
in quel momento, assumendo tutte le orbite circolari e trascurando le loro inclinazioni sull’eclittica.  
Suggerimento: realizzate un disegno (in scala) dell’orbita dei tre pianeti attorno al Sole. Posizionate i pianeti 
assumendo che Venere e Marte siano angolarmente così vicini da poter essere collocati sulla stessa retta. 
 

Soluzione 

 

Quando Venere è a una massima elongazione, la retta Terra-Venere 
è tangente all’orbita di Venere. Con le approssimazioni usate 
possiamo assumere che Sole, Terra, Venere e Marte si trovino ai 
vertici di due triangoli rettangoli, con il lato Venere-Sole in comune. 
Per una massima elongazione est otteniamo il disegno a sinistra. 
Detti VT la distanza Terra-Venere, MV la distanza Marte-Venere, 
VS la distanza Venere-Sole, MS la distanza Marte-Sole, TS la 
distanza Terra-Sole e MT la distanza Marte-Terra possiamo 
risolvere il problema con il teorema di Pitagora. 

VT =  √TS2 −  VS2 ≃   

≃  √2.238 ∙  1016 km2 − 1.171 ∙  1016 km2 ≃ 103.3 ∙  106 km 
 

MV =  √MS2 −  VS2 ≃  √5.194 ∙  1016 km2 − 1.171 ∙  1016 km2 ≃ 200.6 ∙  106 km 

MT = VT + MV ≃  103.3 ∙  106 km  +  200.6 ∙  106 km ≃ 303.9 ∙  106 km 

 
11. Calcolare il periodo sinodico di Nettuno se osservato da un corpo il cui semiasse maggiore dell’orbita 

intorno al Sole vale 227.9 ∙ 106 km. 
 

Soluzione 
Dal valore del semiasse maggiore deduciamo che il corpo da cui è fatta l’osservazione è Marte, il cui 
periodo siderale P è:  

P ≃ 686.97 giorni ≃ 1.8808 anni 

Detto E il periodo siderale di Nettuno, il suo periodo sinodico S visto da Marte varrà quindi: 

                                   𝑆 =  
𝐸 ∙ 𝑃

| 𝐸 − 𝑃 |
 ≃ 

309.93  𝑎𝑛𝑛𝑖2

162.91 𝑎𝑛𝑛𝑖
 ≃ 1.9025 anni ≃ 694.89 𝑔𝑖𝑜𝑟𝑛𝑖  

Nota:  
il valore calcolato è espresso in giorni terrestri, ma un osservatore su Marte calcolerebbe tutte le grandezze 
in unità (giorni o anni) marziane. Il giorno marziano è chiamato ’’sol’’. 

 
 
 



12. Calcolate il peso di un corpo di massa m = 100 kg all’equatore di Mercurio e all’equatore di Saturno, 
considerando l’effetto della forza centrifuga dovuta alla rotazione. Il periodo di rotazione dei due pianeti è, 
rispettivamente, di 1407.5 h e 10h 33m. Poiché Saturno non ha una superficie solida, si assuma come 
distanza dal centro il raggio medio del pianeta. 
 

Soluzione 
Detta g l’accelerazione di gravità, il peso P di un corpo è la forza di gravità tra corpo e pianeta:  

P = m g 

Dalla relazione: g =  
G ∙M

R2
  l’accelerazione di gravità alla superficie di Mercurio 𝐠𝐌 e di Saturno 𝐠𝐒 vale: 

gM =  
6.674 ∙ 10−11 m3

kg s2 ∙ 3.301 ∙ 1023 kg

(2440 ∙ 103 m)2 ≃ 3.700  
m

s2             gS =  
6.674 ∙ 10−11 m3

kg s2 ∙ 5.685 ∙ 1026 kg

(60267 ∙ 103 m)2 ≃ 10.45  
m

s2 

In assenza di rotazione il peso del corpo su Mercurio 𝐏𝐌 e su Saturno 𝐏𝐒 sarà quindi:       

PM = m ∙  gM ≃ 370 N         PS = m ∙  gS  ≃ 1045 N 

Detti T il periodo di rotazione, v (=  
2 π R

T
) il modulo della velocità tangenziale alla superficie e R il raggio 

di un pianeta, la forza centrifuga 𝐅𝐜 è data dalla relazione:  

Fc = m 
v2

R
= m 

4 π2 ∙ R

T2
  

e all’equatore è diretta esattamente in senso opposto alla gravità e rende minore il peso del corpo. Per i due 
pianeti avremo: 

𝐹𝑐𝑀 ≃ 100 𝑘𝑔 
39.48 ∙ 2440 ∙ 103 𝑚

25.67 ∙ 1012 𝑠2  ≃ 3.75 ∙ 10−4 𝑁            𝐹𝑐𝑆 ≃ 100 𝑘𝑔 
39.48 ∙ 60267 ∙ 103 𝑚

144.2 ∙ 107 𝑠2  ≃ 165 𝑁 

Tenendo conto della rotazione il peso del corpo all’equatore di Mercurio 𝐏𝐌−𝐑 e di Saturno 𝐏𝐒−𝐑 vale:     

PM−R ≃ 370 N −  3.75 ∙ 10−4 𝑁 ≃ PM              PS−R ≃ 1045 N − 165 N ≃ 880 N 

 
13.  Un astronauta, il cui peso sulla Terra è di 686.7 N, si trova sulla superficie di un pianeta e lasciando cadere 

un oggetto misura che per percorrere 5.41 m esso impiega 1.01 secondi. La lunghezza dell’equatore del 
pianeta, supposto sferico, è pari a 3.657 ∙ 104 km. Quanto vale la massa del pianeta e quanto pesa, 
trascurando gli effetti dovuti alla rotazione, l’astronauta sul pianeta? 
 

Soluzione 
La caduta libera del corpo segue la legge del moto uniformemente accelerato, detto S lo spazio percorso 

nel tempo 𝒕 e 𝒈𝑷 l’accelerazione sulla superficie del pianeta si ha: 

𝑆 =  
1

2
 𝑔𝑃 𝑡2                           𝑔𝑃 =  

2 𝑆

𝑡2
 ≃  

10.82 𝑚

1.02 𝑠2
 ≃ 10.6 

𝑚

𝑠2
 

Detta C la lunghezza dell’equatore, il raggio R del pianeta vale:  

  𝑅 =  
𝐶

2𝜋
 ≃

3.657 ⋅  104 𝑘𝑚

2𝜋
≃ 5.820 ⋅  103 𝑘𝑚 =  5.820 ⋅  106 𝑚 

La massa M del pianeta è data dalla relazione: 

𝑀 =  𝑔𝑃  
𝑅2

𝐺
=  

10.6 
𝑚
𝑠2  ∙ 3.387 ∙  1013 𝑚2

6.674 ∙  10−11  
𝑚3

𝑘𝑔 𝑠2

 ≃ 5.38 ∙  1024 𝑘𝑔 

La massa dell’astronauta 𝑴𝒂 si può ricavare dal suo peso sulla Terra 𝑷𝑻 e, detta 𝐠𝐓 l’accelerazione di 
gravità sulla superficie terrestre, vale:  



𝑀𝑎 =  
𝑃𝑇

gT
 ≃  

686.7  𝑘𝑔 
𝑚
𝑠2

9.807 
𝑚
𝑠2

 ≃ 70.02 𝑘𝑔 

Il suo peso 𝑷𝑷 sul pianeta sarà quindi: 

𝑃𝑃 =  𝑀𝑎 ∙  𝑔𝑃  ≃  70.02 𝑘𝑔 ∙  10.6 
𝑚

𝑠2
 ≃ 742 

𝑘𝑔 𝑚

𝑠2
  = 742 𝑁  

 
14.  Un pianeta di massa 1.6 ∙ 1026 kg si muove attorno a una stella su un’orbita il cui semiasse maggiore è di 

9.00 UA con un periodo di 20.0 anni. Trovare la massa (in kg e in unità di masse solari) e il raggio (in km e 
in unità del raggio solare) della stella, sapendo che l’accelerazione di gravità sulla fotosfera della stella è 54 
volte quella che si ha sulla superficie della Terra. 
 

Soluzione 
Detto a il semiasse maggiore dell’orbita e T il periodo di rivoluzione, trascurando la massa del pianeta 

(vedere nota alla fine), ricaviamo la massa della stella 𝐌𝐬 dalla III legge di Keplero: 

Ms =  
4 π2 a3

G T2
≃  

39.48 ∙ 2.44 ∙ 1036 𝑚3

6.674 ∙  10−11 𝑚3

𝑘𝑔 𝑠2  ∙ 3.98 ∙  1017 𝑠2

 ≃ 3.63 ∙  1030 𝑘𝑔 ≃ 1.82 𝑀⊙ 

Detta 𝐠𝐒 l’accelerazione di gravità sulla fotosfera della stella e 𝐠𝐓 l’accelerazione di gravità sulla superficie 

della Terra, possiamo ricavare il raggio della stella 𝐑𝐬 dalla relazione: 

𝑅𝑠 = √
𝐺 ∙ 𝑀𝑠

𝑔𝑆
 =  √

𝐺 ∙ 𝑀𝑠

54 ∙  𝑔𝑇
  

𝑅𝑆  ≃  √
6.674 ∙  10−11 𝑚3

𝑘𝑔 𝑠2  ∙  3.63 ∙  1030 𝑘𝑔 

54 ∙ 9.807 
𝑚
𝑠2

 ≃  6.76 ∙  105 𝑘𝑚 ≃ 0.973 𝑅⊙ 

Nota. 
L’assunzione iniziale della massa del pianeta trascurabile rispetto a quella, non ancora nota, della stella, 
risulta giustificata in quanto sappiamo, dallo studio della struttura ed evoluzione stellare, che la massa 

minima di una stella è: Mminima−stella ≥ 0.08 ∙ M⊙ ≃  1.59 ∙  1029 kg ≃ 1000 ∙ Mpianeta 

 
15.  Calcolate il minimo periodo di rivoluzione di un corpo di piccola massa che si muove su un’orbita circolare 

attorno a una nana bianca (White Dwarf  = WD) il cui raggio è pari a quello della Terra. A che frazione 
della velocità della luce si muove il corpo? Nella soluzione si tenga conto che il massimo valore possibile 
per la massa di una WD (detto limite di Chandrasekhar) è pari a 1.44 volte la massa del Sole. 
 

Soluzione 
Il periodo di rivoluzione T di un corpo di massa trascurabile in orbita a una distanza a intorno a una stella 
di massa M vale:  

T =  √ 
4 π2 ∙  a3 

G ∙ M
 

Il valore minimo del periodo 𝐓𝐌𝐈𝐍 si avrà quando il raggio dell’orbita è minimo (poiché si trova al 
numeratore), e quando la massa della WD è massima (poiché si trova al denominatore). Il raggio minimo 

dell’orbita è pari al raggio 𝐑𝐖𝐃 della WD, che sappiamo essere pari al raggio della Terra 𝐑𝐓. Dalla teoria 

dell’evoluzione stellare sappiamo che il valore massimo 𝑴𝑾𝑫−𝒎𝒂𝒙 della massa di una WD è pari a 1.44 

volte la massa del Sole 𝑴⊙. Avremo quindi: 



𝑇𝑀𝐼𝑁 =  √ 
4 π2 ∙  𝑅𝑇

3 

G ∙ 1.44  𝐌⊙
 

𝑇𝑀𝐼𝑁 ≃  
√

4 ∙  𝜋2 ∙ 2.595 ∙  1020 𝑚3

6.674 ∙ 10−11 𝑚3

𝑘𝑔 𝑠2  ∙ 1.44 ∙ 1.989 ∙  1030 𝑘𝑔
  ≃ 7.32 𝑠 

Detta C la lunghezza dell’orbita del corpo, la sua velocità v è data da: 

v =  
C

T
 =

2 𝜋 RT

𝑇
 ≃

40074 km

7.32 s
 ≃ 5.47 ∙  103 

km

s
≃ 0.0183 𝑐 = 1.83 ∙ 10−2 𝑐 

 
16.  Un satellite artificiale ruota attorno alla Terra, che assumiamo perfettamente sferica, su un’orbita equatoriale 

circolare a una distanza di 4325 km dalla superficie. Un osservatore lo vede passare al meridiano a 
mezzanotte. Dopo quanto tempo lo vedrà passare nuovamente al meridiano se:  
a) il satellite si muove da Ovest verso Est;  
b) il satellite si muove da Est verso Ovest? 

 

Soluzione 

Detta h l’altezza del satellite dalla superficie e 𝑹𝑻 il raggio della Terra, la distanza D del satellite dal centro 
della Terra vale:  

D = RT + ℎ = 6378 + 4325 = 10703 km 

Possiamo ricavare il periodo di rivoluzione 𝑻𝒔 del satellite dalla III legge di Keplero: 

      Ts =  √
4 ∙π2 D3

G ∙ MT
≃ √

39.478  ∙ 1.2261 ∙ 1021 𝑚3

6.674 ∙ 10−11 𝑚3

𝑘𝑔 𝑠2 ∙ 5.972 ∙ 1024 𝑘𝑔
 ≃ 11020 𝑠 ≃ 183.7 𝑚 ≃ 3ℎ 4𝑚  

I passaggi successivi del satellite al meridiano di un luogo avvengono a intervalli di tempo pari al suo 

periodo sinodico S riferito al periodo di rotazione siderale della Terra 𝐓𝐓 (= 23h 56m 4s = 86164 s). 
a. Se il satellite si muove da Ovest verso Est, ovvero nello stesso senso della rotazione della Terra, vale la   

relazione:   

S =  
Ts ∙ TT

| Ts −  TT |
  ≃

11020 𝑠 ∙ 86164 𝑠

75144
≃ 12640 𝑠 ≃ 210.6 𝑚 ≃ 3ℎ 31𝑚 

b. Se il satellite si muove da Est verso Ovest, ovvero in direzione opposta alla rotazione della Terra, vale la 

relazione:   

S =  
Ts ∙ TT

| Ts + TT |
 ≃

11020 𝑠 ∙ 86164 𝑠

97184
≃ 9770 𝑠 ≃ 162.8 𝑚 ≃ 2ℎ 43𝑚 

 
17.  Considerate un ipotetico osservatore posto al centro della Terra e calcolate le dimensioni angolari (diametro 

apparente) che misurerebbe per il Sole quando la Terra si trova all’afelio e al perielio. Confrontate questi 
valori con quelli che misurerebbe per le dimensioni angolari della Luna al perigeo e all’apogeo. 
 

Soluzione 

Detti 𝐚𝐓 il semiasse maggiore ed 𝐞𝐓 l’eccentricità dell’orbita della Terra, le distanze dell’osservatore dal Sole  

all’afelio 𝐝𝐀⊙  e al perielio 𝐝𝐏⊙ valgono: 

𝑑𝐴⊙ =  𝑎𝑇 (1 +  𝑒𝑇) ≃ 152.1 ∙  106 𝑘𝑚                     𝑑𝑃⊙ =  𝑎𝑇 (1 −  𝑒𝑇) ≃ 147.1 ∙  106 𝑘𝑚 

Quindi, detto 𝐑⊙ il raggio del Sole, per un osservatore al centro della Terra le dimensioni angolari minime 

𝐃𝐀⊙ (Terra all’afelio) e massime 𝐃𝐏⊙  
(Terra al perielio) del Sole valgono:  

DA⊙ = 2 ∙  sin−1 (
R⊙

dA⊙
)  ≃ 31′. 44                    DP⊙ = 2 ∙  sin−1 (

R⊙

dP⊙
)  ≃ 32′. 51 



Detti 𝐚𝐋 il semiasse maggiore ed 𝐞𝐋 l’eccentricità dell’orbita della Luna, le distanze dell’osservatore dalla 

Luna all’apogeo 𝐝𝐀𝐋  e al perigeo 𝐝𝐏𝐋  valgono: 

𝑑𝐴𝐿 =  𝑎𝐿 (1 +  𝑒𝐿) ≃ 405.5 ∙  103 𝑘𝑚                     𝑑𝑃𝐿 =  𝑎𝐿 (1 −  𝑒𝐿) ≃ 363.3 ∙  103 𝑘𝑚 

Quindi, detto 𝑹𝐋 il raggio della Luna, per un osservatore al centro della Terra le dimensioni angolari 

minime 𝐃𝐀𝑳 (Luna all’apogeo) e massime 𝐃𝐏𝑳  
(Luna al perigeo) della Luna valgono:  

DAL = 2 ∙  sin−1 (
RL

dA𝐿
)  ≃ 29′. 47                    DPL = 2 ∙  sin−1 (

RL

dP𝐿
)  ≃ 32′. 89 

Notiamo che quando la Luna si trova all’apogeo la sua dimensione angolare è minore di quella del Sole 
anche quanto la Terra è all’afelio, mentre quando la Luna si trova al perigeo la sua dimensione angolare è 
maggiore di quella del Sole anche quando la Terra è al perielio. 

 
18.  A quale distanza dalla superficie della Terra un uomo con massa di 80.0 kg ha un peso di 600 N? 

 

Soluzione 
Detta g l’accelerazione di gravità, il peso P è dato dalla relazione: P = m g. Detta r la distanza dal centro 

della Terra, per avere P = 600 N occorre che l’accelerazione di gravità 𝐠𝐫 sia: 

gr =  
P

m
=  

600 
𝑘𝑔 𝑚

𝑠2

80.0 kg
= 7.50 

m

s2
 

Detta h l’altezza sulla superficie e R e 𝐌𝐓 raggio e massa della Terra, si ha: r = R + h e quindi: 

gr =
G MT

r2
=

G MT

(R+h)2
  

Risolvendo rispetto ad h si ha: 

(R + h)2 =
G MT

gr
           da cui:  R + h =  √

G MT

gr
             e infine:  h =  √

G MT

gr
 − R 

ℎ ≃ √
6.674 ∙  10−11 𝑚3

𝑘𝑔 𝑠2  ∙ 5.972 ∙  1024 𝑘𝑔

7.50 
m
s2

− 6378 ∙  103 𝑘𝑚 ≃ 912 ∙  103 𝑚 = 912 𝑘𝑚 

Nota: 
Sulla superficie della Terra una massa di 80.0 kg ha un peso di 784 N. 

 
19. Le stelle di neutroni sono corpi estremamente densi e in rapida rotazione. Consideriamo una di tali stelle 

con raggio di 15.1 km e periodo di rotazione pari a 1.41 ∙ 10-3 s. 
1. Stimate la velocità tangenziale all’equatore in frazione della velocità della luce; 
2. Stimate la sua massa minima per trattenere oggetti all’equatore altrimenti espulsi a causa della rotazione; 
3. Spiegate perché una stella di neutroni ruota così velocemente. 
 

Soluzione 

1. Detti 𝑹 il raggio della stella e 𝑴 la sua massa, la velocità tangenziale 𝒗𝒕 all’equatore è data dalla 

relazione: 

vt =  
2 π R

T
 ≃  

2 π ∙ 15.1 km

1.41 ∙  10−3 s
 ≃ 6.73 ∙  104  

km

s
 ≃ 0.224 c 

2. Per impedire che un corpo di piccola massa sfugga a causa della rotazione, la forza di gravità deve 

essere almeno uguale alla forza centrifuga. Ciò equivale a dire che il modulo della velocità tangenziale 

all’equatore deve essere al massimo pari alla prima velocità cosmica:  



vt =  √
G M

R
 

da cui ricaviamo il valore minimo della massa 𝑴𝒎𝒊𝒏 della stella di neutroni: 

Mmin =  
R ⋅   vt

2

G
 ≃  

15.1 ∙  103 m ∙ 4.53 ∙  1015  
m2

s2

6.674 ∙  10−11  
m3

kg s2

 ≃ 1.02 ∙  1030 kg ≃ 0.515 M⊙ 

3. Una stella di neutroni è il resto di una stella di grande massa (> 10 M⊙) esplosa come supernova. Prima 

di esplodere la stella era una gigante o supergigante rossa. La conservazione del momento angolare 
(anche se in realtà nel corso dell’esplosione gran parte del momento angolare viene perso) fa sì che la 
stella di neutroni abbia un periodo di rotazione estremamente breve. 

 

Nota. 

Il valore ottenuto per la massa è un limite minimo; le stelle di neutroni hanno masse 𝑴 comprese 
nell’intervallo: 

1.5 M⊙ < 𝑀 < 2.1 M⊙ 

 
20.  Una stella di neutroni ha raggio di 15.0 km e massa pari al doppio di quella del Sole. Calcolare: la densità 

media della stella, l’accelerazione di gravità sulla sua superficie, la velocità di arrivo al suolo di un corpo che, 
partendo da fermo, cade da un’altezza di 2 m e il tempo di caduta del corpo. Calcolare inoltre il peso sulla 
superficie della Terra di 1 cm3 di materia della stella di neutroni e le dimensioni di un cubo di ferro (densità 

del ferro 𝜚𝐹𝐸 = 7870 kg/m3) con la stessa massa di 1 cm3 di materia della stella di neutroni. 
 

Soluzione 

Detti M la massa, V il volume e R il raggio, la densità media 𝝆 della stella di neutroni è data dalla relazione:  

ρ =  
M

V
=  

3 M

4 π R3
 ≃  

3 ∙ 3.978 ∙ 1030 𝑘𝑔

12.57 ∙ 3.38 ∙ 1012 𝑚3  ≃ 2.81 ∙  1017 
𝑘𝑔

𝑚3
≃ 2.81 ∙  1011 

𝑘𝑔

𝑐𝑚3
  

L’accelerazione di gravità 𝐚𝐠𝐍 sulla superficie della stella di neutroni vale: 

agN =  
G M

R2
≃ 

6.674 ∙ 10−11 𝑚3

𝑘𝑔 𝑠2 ∙ 3.978 ∙ 1030 𝑘𝑔

225 ∙ 106 𝑚2
 ≃ 1.18 ∙  1012 

𝑚

𝑠2
 

Poiché il rapporto K tra la distanza iniziale h del corpo dalla superficie e il raggio della stella vale: 

𝐾 =  
ℎ

𝑅
=  

2 𝑚

15 𝑘𝑚
 ≃ 1.3 ∙  10−4 

possiamo considerare costante l’accelerazione di gravità lungo il percorso e calcolare la velocità di arrivo 𝒗 
considerando un moto uniformemente accelerato con partenza da fermo: 

𝑣 =  √2 𝑎𝑔𝑁 ℎ ≃ √2 ∙  1.18 ∙ 1012  
𝑚

𝑠2
 ∙ 2 𝑚 ≃ 2.17 ∙  106 

𝑚

𝑠
= 2.17 ∙  103 

𝑘𝑚

𝑠
  ≃ 7 ∙  10−3 𝑐 

Il tempo 𝒕 di caduta è dato dalla relazione: 

 𝑡 =  √
2 ℎ

𝑎𝑔𝑁
 =  √

4 𝑚

1.18 ∙  1012 𝑚
 𝑠2

 ≃ 1.84 ∙  10−6 𝑠 

La massa 𝑴𝟏 di 1 cm3 di materia della stella di neutroni vale: 

𝑀1 =  V ∙ ρ ≃ 1 𝑐𝑚3 ∙ 2.81 ∙  10 11
𝑘𝑔

𝑐𝑚3
≃ 2.81 ∙  10 11 kg 

Detta 𝐚𝐠𝐓 l’accelerazione di gravità sulla superficie della Terra, il peso 𝑷𝟏 della massa 𝑴𝟏 sarebbe: 



𝑃1 =  𝑀1 agT ≃ 2.81 ∙  10 11 kg ∙ 9.807 
𝑚

𝑠2
 ≃ 2.76 ⋅ 1012 𝑁 

Per avere una massa di ferro 𝑴𝑭𝒆 pari a  𝑴𝟏 avremo bisogno di un volume di ferro 𝑽𝑭𝒆 pari a:  

𝑉𝐹𝑒 =  
𝑀𝐹𝑒

𝜚𝐹𝑒
≃  

2.81 ∙  10 11 kg

7870 
𝑘𝑔
𝑚3

 ≃ 3.57 ⋅  107 𝑚3 

e quindi di un cubo con lato L pari a: 

𝐿 =  √𝑉𝐹𝑒
3  ≃  √3.57 ⋅  107 𝑚33

 ≃ 329 𝑚 


